
6 Acta Electrotechnica et Informatica, Vol. 11, No. 1, 2011, 62–65, DOI: 10.2478/v10198-011-0010-2

CAUSE-BASED MODEL OF SOFTWARE EVOLUTION

Miroslav SABO
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 4179, e-mail: miroslav.sabo@tuke.sk

ABSTRACT
Domain-specific languages are used to develop highly specialized software. From the implementation perspective, evolution of

such software can not utilize evolutionary methods used for software developed in a traditional way. This paper presents the model of
evolution, considering the software system as a composition of two separate parts – domain-specific language reflecting the application
environment and system by itself reflecting the actual solution to a specified problem. The process of evolution is driven in accordance
to the nature of evolutionary change. The paper also discusses the categorization of changes by cause which induced them.

Keywords: cause of change, complexity of software system, domain-specific language, language evolution

1. INTRODUCTION

The laws of software evolution were written by Lehman
in early 1970s [10] but despite the long time period, tools
for effective solving of the problems identified by these
laws have not yet been developed. The model of software
evolution proposed in this paper is targeted towards first two
of the laws - law of continuing change and law of increasing
complexity and should serve as a common basis for devel-
opment of tool support for software evolution.

Law of continuing change states that effectivity of the
system will be progressively deteriorated until it is contin-
ually adapted to changes in the application environment.
Many solutions have been proposed to address this law
[1, 6, 16], but success was always achieved by increase of
complexity of the system. The negative side effect of the
first law is also the main concern of the second Lehman’s
law. It states that as system evolves, its complexity will con-
tinually increase until progressive or anti-regressive effort
is invested into maintaining or reducing it. This means that
with changes implemented to the system successively one
upon each other, interactions and dependencies between
system elements increase in an unstructured pattern and
lead to an increase in system’s entropy. The best results
in addressing this issue have been achieved with the gen-
erative methods of software development. In this approach
changes are applied to the model of a system on higher level
of abstraction and final implementation is generated from
this model automatically.

Model of software evolution proposed in this paper in-
troduces the differentiation between two parts of a sys-
tem which represent the application environment and ac-
tual solution to a specified problem. That way evolution-
ary changes can be applied directly to the subject they con-
cern, without increasing the overall complexity of a system.
Categorization of evolutionary changes by the cause which
induced them is defined in Sec. 3. Changes of each cate-
gory are targeted towards specific part of the system, mod-
ification of which does not influence other parts, therefore
overall complexity of a system is well preserved during the
whole process of evolution.

2. INEVITABILITY OF CHANGE

Change is the main characteristic of software evolution
as software systems have to react on constantly evolving
requirements and underlying platforms and other impulses
from environment which they operate in. Changes are in-
evitable from different reasons:

• New requirements on system – requirements on
system can change early in the process of software
development but this phase may not always be con-
venient for their implementation from different rea-
sons (e.g. firmly determined deadlines do not allow
for unforeseen activities). On the other hand, it is the
pressure from satisfied customers which are creating
new requirements for functional extensions of a sys-
tem.

• Modelling of reality – as the environment of a sys-
tem dynamically evolves and changes, system must
be continually adapted else it becomes progressively
less satisfactory [10]. In extreme cases when systems
are interconnected with application environment too
tightly, environment is influenced by the system right
after the deployment which in turn results in im-
mediate need for adaptation of the system on these
changes.

• Bug fixing – these requirements arise mainly in the
testing phase.

• Architectural changes – significant changes in the
structure of a system (e.g. system working with busi-
ness processes evolves and increasing complexity re-
quires integration of the rule engine which will inter-
act with many modules within the system).

• Enhancing the performance and reliability of the
system.

3. TYPOLOGY OF SOFTWARE EVOLUTION

In the 1970s, Swanson proposed the typology of soft-
ware maintenance [11] which was distinguishing between
maintenance activities accordingly to the purpose which
they were executed for:

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:16 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 1, 2011 63

1. adaptive – ensure the usability of a system after
changes in environment or technical infrastructure of
a system happen.

2. corrective – remove bugs from implementation,
usually cover the solving of problems caused by dis-
crepancies between requirements and implementa-
tion.

3. perfective – any enhancements which increase the
quality of a system (e.g. adding new features, in-
creasing performance or system documentation).

Some taxonomies [5] added another category:

4. preventive – this last category is often the subject
of discussions, considered by some as part of per-
fective maintenance [2]. IEEE software engineering
terminology standard [5] defines preventive mainte-
nance as ”maintenance executed with intention to
prevent the problems before they even occur”.

This typology had been rafined over time and based on
the work experience the classification of 12 types of soft-
ware evolution and software maintenance [3] was defined
later (Tab. 1).

Table 1 Typology of software evolution (E) and software
maintenance (M)

Object of change Type of change E/M

Business rules
Enhancive

E/MCorrective

Reductive

Software properties

Adaptive
E/M

Performance

Preventive
M

Groomative

Documentation
Updative

M
Reformative

Support interface
Evaluative

MConsultive

Training

Complementary view on this topic presents Mens in his
work [12] which is focused towards technical aspects of the
software change. He proposes the taxonomy of software
evolution based on characteristic mechanisms of change
and factors which influence these mechanisms.

Even though precise fine-grained typology of software
evolution is well documented, the model of software evo-
lution proposed in this paper distinguishes only four funda-
mental types of evolution - adaptive, corrective, perfective
and preventive.

4. CAUSE-DRIVEN SOFTWARE EVOLUTION
MODEL

Model of software evolution proposed in this paper is
focused on elimination of the negative side effect of adapta-
tion to continually evolving environment - increased com-
plexity of a system. The main idea is targeting the appli-
cation of changes strictly to those parts of the system im-
plementation which represent the evolved objects in real
world. For systems developed in general purpose languages
this constitutes a complicated problem because develop-
ment requires implementation of the concepts of applica-
tion environment at first and just after that the new solution
by itself may be implemented. Both implementations are
tangled together and therefore adaptation of the system to
environmental changes requires identification of the parts
of a system to be adapted before adaptation can be executed.
Even after that, change of the adapted code may be dele-
gated further into system because of tangled code. The re-
sult is increased complexity of the structure of system. Pro-
posed model of software evolution separates the implemen-
tation of application environment from the implementation
of the solution to a problem therefore evolution can be tar-
geted directly to the actual subject of change. Domain-
specific languages, as technology following the principles
of generative approach to software development, are uti-
lized as tool for representation of application environment
of the evolving system.

4.1. Software evolution in domain-specific languages

For the implementation of the change in software sys-
tems developed in general purpose languages (GPLs), its
type is not relevant because all changes are applied on the
same level - source code of the application. It does not mat-
ter whether changes relate directly to the change in specifi-
cation of the system or are induced by the change of envi-
ronment thus do not relate to the specification at all.

From the perspective of evolution, development of soft-
ware systems in domain-specific languages offers some
benefits. Changes are always executed on the level which
they directly relate to. Domain-specific languages (DSLs)
are by definition [17] languages which directly reflect some
specific domain. Therefore they can be considered as a
model of application domain [4]. The implication of this
is that any changes arisen in the application domain should
be reflected in appropriate DSL which models this domain.
Contrary to software systems developed in GPLs, the im-
pact of such changes is on models/specifications of systems
developed in DSL minimal or none [8]. Considering the
evolution induced by change of environment and not by the
change of definition of a problem, DSL approach follows
these events precisely:

• changes in environment⇒ changes in DSL and gen-
erator/interpreter

• (no) changes in definition of the problem ⇒ (no)
changes in model/specification of the application

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:16 AM

64 Cause-Based Model of Software Evolution

4.2. Causes of change

Changes which occur during software evolution can
emerge from 3 different sources:

1. application domain

2. solution specification (problem definition)

3. solution implementation

Solution
specification

Solution
implementation

Application domain

DSL

generator / interpreter

Application

adaptive
changes

perfective
changes

corrective
changes

preventive
changes

Problem
definition

Fig. 1 Causal model of the software evolution

Evolutionary changes of application domain are re-
flected in the modification of a DSL in which the appli-
cation is modeled/implemented. The modifications include
addition, removal or adjustment of the language constructs,
rearrangement of relations between the constructs and ad-
justment of the generator or interpreter. The system as a
composition of two separate parts – language and actual
solution to a problem – brings the advantage of minimal to
none impact on a solution while performing the modifica-
tions to the language. The changes are introduced to the
new version of a system either by its regeneration using an
evolved generator or by using an evolved interpreter [7, 9].
Changes caused by evolution of application domain are
called adaptive changes.

Changes of the solution model/implementation are
either caused by issues discovered in the previous
version (corrective changes) or result from new re-
quirements on performance, usability, maintainability or
other attributes of a system (perfective and preventive
changes). These changes are performed directly to the
model/implementation of a solution or they might also re-
quire some minor modifications of a language.

5. SOFTWARE EVOLUTION USING CAUSAL
MODEL

Considering the target of a change implementation, as
defined in Tab. 2, evolution of a software system can be
divided into:

1. evolution of a language

2. evolution of a solution model/implementation

Table 2 Sources and targets of evolutionary changes

Change Change type

Source Target A Pe Pr C

Application domain DSL *

Solution specification
Solution

* *

Solution implementation *

5.1. Evolution of a language

Evolution of a language is closely related to the manner
of a language design. Domain-specific languages are gen-
erally designed in two ways - internal and external. Con-
sidering internal DSLs as higher level abstraction of GPLs,
the evolution of such languages gets down to the common
evolution of a code written in general purpose language.

On the other hand, external DSLs are usually designed
using metamodelling approaches of language workbenches
specialized for language development [14]. After the model
of a language is created, the complete development envi-
ronment for the new language, including tools such as edi-
tors, browsers, generators and interpreters, is generated au-
tomatically from the model. The evolution of such DSLs
therefore boils down to the modification of the model of a
language [17].

Similar approach to the evolution of external textual
DSLs is provided by the language development tool YA-
JCo [13,15] which is based on the definition of abstract syn-
tax. Model of the language consists of Java classes which
represent abstract syntax. Concrete syntax is defined upon
abstract syntax classes through annotations. The change
of the language, in the same manner as language work-
benches, requires only modifications on the abstract and
concrete syntax level and new generator for the language
is created automatically.

5.2. Evolution of a solution model/implementation

Evolution of a solution implementation, which might be
considered as a model, is similar to the evolution of the pro-
gram written in GPL. The usage of DSL, however, brings
some advantages specific for this approach such as imple-
mentation directly in the concepts of the domain, domain-
specific control checking and domain-specific optimization.

The biggest advantage of using domain-specific lan-
guages, however, is that changes targeting solution
model/implementation can be performed in a straightfor-
ward manner because implementation language (DSL) in
which the changes will be applied is on the same level of
abstraction as language in which the requirements are spec-
ified (language of domain experts). All in all, evolution
of the software systems developed in domain-specific lan-
guages is simple, easy to execute and less error-prone.

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:16 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 1, 2011 65

6. CONCLUSION

In this paper I have presented the cause-based model of
software evolution. This model satisfies both of the first
two Lehman’s laws of software evolution - law of continu-
ing change and law of increasing complexity. Preservation
of the complexity of software system during the process of
evolution, as a major problem identified by these laws, is
achieved by application of evolutionary changes strictly to
those elements of the system which represent the subject
of change in a real world. The part of a system to accom-
modate the evolutionary change is determined with respect
to the type of a change. The categorization of types of
changes, based on the cause which induced them, is also
presented in the paper.

ACKNOWLEDGEMENT

This work is the result of the project implementa-
tion: Centre of Information and Communication Tech-
nologies for Knowledge Systems (ITMS project code:
26220120020) supported by the Research & Development
Operational Programme funded by the ERDF.

REFERENCES

[1] CAZOLLA, W. – PINI, S. – ANCONA, M.: Evolv-
ing Pointcut Definition to Get Software Evolution.
ECOOP ’04: Proceedings of the Workshop on Reflec-
tion, AOP and Meta-Data for Software Evolution, pp.
83-88, 2004.

[2] CHAPIN, N.: Do We Know What Preventive Mainte-
nance Is? ICSM ’00: Proceedings of the International
Conference on Software Maintenance (ICSM’00),
ISBN 0-7695-0753-0, IEEE Computer Society, Wash-
ington, DC, USA, pp. 15–17, 2000.

[3] CHAPIN, N. – HALE, J. E. – KHAM, K. M. – RAMIL,
J. F. – TAN, W.: Types of software evolution and soft-
ware maintenance, Journal of Software Maintenance
13, No. 1 (2001) 3–30

[4] CZARNECKI, K.: Overview of Generative Software
Development. pp. 326-341, 2004.

[5] Electrical, Institute O. and (ieee), Electronics E.: IEEE
90: IEEE Standard Glossary of Software Engineering
Terminology, 1990.

[6] GREEVY, O. – DUCASSE, S. – GÎRBA, T.: Analyzing
software evolution through feature views: Research Ar-
ticles, Journal of Software Maintenance and Evolution:
Research and Practise 18, No. 6 (2006) 425–456

[7] KOLLÁR, J. – PORUBÄN, J. – VÁCLAVÍK, P. –
BANDÁKOVÁ, J. – FORGÁČ, M.: Adaptive Com-
piler Infrastructure. Komunikačné a informačné tech-
nológie, ISBN 978-80-8040-324-9, Tatranské Zruby,
pp. 4–5, 2007.

[8] KOLLÁR, J. – PORUBÄN, J. – VÁCLAVÍK, P. –
FORGÁČ, M. – BANDÁKOVÁ, J.: How to Adapt
Programming Languages instead of Software Systems,

Computer Science and Technology Research Survey,
Košice, Elfa, 2007, 2, pp. 69–79, ISBN 978-80-8086-
071-4.

[9] KOLLÁR, J. – PORUBÄN, J.: Building Adaptive Lan-
guage Systems, INFOCOMP - Journal of Computer
Science, 7, 1, 2008, pp. 1–10, 1807-4545.

[10] LEHMAN, M. M.: Laws of Software Evolution Re-
visited. EWSPT ’96: Proceedings of the 5th European
Workshop on Software Process Technology, Springer-
Verlag, London, UK, pp. 108–124, 1996.

[11] LIENTZ, B. P. – SWANSON, E. B.: Software Main-
tenance Management: A Study of the Maintenance of
Computer Application Software in 487 Data Processing
Organizations. Addison-Wesley Publications, 1980.

[12] MENS, T. – BUCKLEY, J. – RASHID, A. – ZENGER,
M.: Towards a taxonomy of software evolution.
ECOOP ’02: Proceedings of the Workshop on Unan-
ticipated Software Evolution, Vrije Universiteit Brus-
sel, 2002.

[13] MERNIK, M. – PORUBÄN, J.: Language Design
with Concrete/Abstract Syntax: LISA vs. YAJCo Com-
piler Generators Approaches. Informatics’09: Proceed-
ings of the 10th International Conference on Informat-
ics, Vol. 10, ISBN 978-880-8086-126-1, Elfa, Košice,
2009.

[14] METACASE: MetaEdit+, http://www.metacase.com,
2009.

[15] PORUBÄN, J. – FORGÁČ, M. – SABO, M.: Annota-
tion Based Parser Generator. WAPL ’09: Proceedings
of the International Multiconference on Computer Sci-
ence and Information Technology, Vol. 4, ISBN 978-
83-60810-22-4, Mragowo, Poland, pp. 707–714, 2009.

[16] REISS, S. P.: Constraining Software Evolution. ICSM
’02: Proceedings of the International Conference
on Software Maintenance (ICSM’02), ISBN 0-7695-
1819-2, IEEE Computer Society, Washington, DC,
USA, pp. 162–171, 2002.

[17] SPRINKLE, J. – GRAY, J. – MERNIK, M.: Fundamen-
tal Limitations in Domain-Specific Language Evolu-
tion. IEEE Transactions on Software Engineering, Vol.
35, No. 3, 2009.

Received September 9, 2010, accepted January 5, 2011

BIOGRAPHY

Miroslav Sabo was born on 16. 11. 1984. In 2008 he grad-
uated (MSc) with distinction at Department of Computers
and Informatics of Faculty of Electrical Engineering and
Informatics at Technical University in Košice. Currently
he is a doctoral student at Department of Computers and
Informatics, Technical University of Koice, Slovakia. The
subject of his research is the utilization of generative meth-
ods in development and evolution of software systems in
permanently changing environment.

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:16 AM

