
54 Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010, 54–58

CONTEXT HELP SEARCHING FOR wxHASKELL GRAPHIC LIBRARY

Ján KOLLÁR and Emı́lia PIETRIKOVÁ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 2577,
e-mail: {jan.kollar, emilia.pietrikova}@tuke.sk

ABSTRACT
This paper deals with two different approaches in programming sphere, and joins them in one entity through its practical part.

One approach is context searching that is applied on the second approach, functional graphic library wxHaskell that is designed
and implemented within Eclipse development environment through the plug-in extension. As searching object lies at the wxHaskell
documentation, it is lexically analyzed, what forms a hashing table determined to searching for records.

Keywords: Eclipse, hashing, Haskell, context help, support, wxHaskell

1. INTRODUCTION

The task of searching is one of the most frequent oper-
ations in computer programming. Context searching refers
to proactive capturing of user’s information need through
automatic augmenting user’s query with information ex-
tracted from the search context. There exist several basic
variations of the searching theme, and many different algo-
rithms have been developed on this subject, while the basic
assumption is that the collection of data, among which a
given element is to be searched, is fixed [11].

Searching in explicitly stored amount of data include
many algorithms that use a variety of search data struc-
tures, such as the simple linear search, binary search, and
hash tables. Each hash algorithm is based on a simple item
field, called associative array, and hash table as well. Hash
table, also entitled as a transformation table, is a special
data structure using hash function to efficiently map certain
identifiers to associated values [11].

A pair of different keys with the same hash values is a
hash collision. Ideally the hash function should map each
possible key to a different index. However, this ideal is
rarely achievable in practice, so most hash table designs as-
sume that hash collisions are normal occurrences and must
be accommodated in some way [9].

In this paper, main object of the context searching is a
functional graphic library wxHaskell. Central to functional
programming is the idea of a function that computes a re-
sult that depends on the values of its inputs [3]. wxHaskell
is a graphical user interface (GUI) library for Haskell that
is built on wxWidgets: a free industrial strength GUI li-
brary for C++ that has been ported to all major platforms,
that retains the native look-and-feel of each particular plat-
form [7].

wxHaskell consists of two libraries, WXCore and WX.
The WXCore library provides the core interface to wxWid-
gets functionality. It exposes about 2800 methods and more
than 500 classes of wxWidgets [2]. Using this library is
just like programming wxWidgets in C++ and provides the
raw functionality of wxWidgets. For connection with the
original library, WXCore uses standard Foreign Function
Interface (FFI) depicted on Fig. 1 [8]. The WX library is
implemented on top of WXCore and provides many useful
functional abstractions to make the raw wxWidgets inter-

face easier to use.

WX

WXCore

wxWidgets

wxHaskell

FFI FFI

Fig. 1 Interface of wxHaskell graphic library above wxWidgets

2. DOCUMENTATION AND HADDOCK TOOL

Documentation of wxHaskell library is generated
through the Haddock tool that is primarily intended for
documenting hierarchical Haskell libraries with annotated
source code. Haddock allows writing documentation an-
notations next to the definitions of functions and types in
the source code, in a simple way that is an assumption
for automatic generation of a comprendious documentation.
The documentation generated in this manner is fully hyper-
linked.

The wxHaskell documentation consists of three types of
pages with the exact structure, as shown in Fig. 2:

• Main page with general description of the li-
brary, that links to the Index page, Module
pages, and other useful pages. Module pages
are specified with part of the HTML code:
STYLE=padding-left: 1.25em; width: 44em,
and separated from foot of the page with:
CLASS=s15. These code specifications are used as
part of lexical analysis applied in the design and im-
plementation Section 3.

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 55

• Index page of keywords, that might be searched, and
links to Module pages containing the keywords. This
page is not considerated in the design and implemen-
tation part.

• Module page with general description of a module,
and detailed specifications of each definition, argu-
ment, and other components.
Each specification is listed in a separate block. State-

ment blocks bound with code CLASS=s15 and defi-
nitions begin with characters CLASS=decl, while the
first word is always treated as a keyword dedicated
for the searching process.

These auxiliary codes are cut-out of the HTML tags re-
ferring to particular pages of the wxHaskell documentation.
Lexical analysis considerates only the code sections, not the
whole tags.

MAIN LIBRARY PAGE

Library description

List of library modules

INDEX

A to Z

:

#

.

SUBPAGES FOR LIBRARY KEYWORDS:

doc-index-A.html to doc-index-Z.html

doc-index-58.html

doc-index-35.html

doc-index-46.html

WX LIBRARY

WXCore LIBRARY

WX LIBRARY MODULES

WXCore LIBRARY MODULES

OTHER PAGES:

http://wxhaskell.sourceforge.net

http://www.wxwidgets.org

http://www.wxwidgets.org/newlicen.htm

HADDOCK TOOL:

http://www.haskell.org/haddock

Fig. 2 References contained in main page of the wxHaskell documentation

3. PLUG-IN DESIGN

Context searching in the wxHaskell library was de-
signed as a plug-in extending Eclipse development environ-
ment called SearchFP, using the Haddock documentation,
Google, and user’s auxiliary code database.

3.1. Requirement specification

Basic assumption for the plug-in design consists of
searching purpose and expected search result, what divided
searching in three areas: Documentation Search for a par-
ticular keyword description, auxiliary Code Search pertain-
ing to a keyword, and Google Search through the Internet.

The main requirement was time saving in the course of
manual searching in the documentation webpage what im-
plies two requirements: understandability and reusability.

Additional two requisitions form actual information and
open perspective for other libraries, that could be provided
with a standard configuration .ini file. The file would keep
url address (addresses) of the library (libraries), and literals
necessary for lexical analysis. As one of the plug-in precon-
ditions is Code Search, the last requirement is a possibility
to form user’s own auxiliary code database through .xml

file.

3.2. Use-cases

On the basis of mentioned requirements, a simple use-
case diagram was designed (see Fig. 3). Each use-case sce-
nario starts in the Eclipse environment, as the user uses ed-
itor of the Eclipse perspective. User is able to mark a spe-
cific word, having three possibilities for searching: search-
ing in the documentation, local code database, or searching

ISSN 1335-8243 c© 2010 FEI TUKE

56 Context Help Searching for wxHaskell Graphic Library

via Internet Google search engine. Search results can be
displayed in the perspective of view, new file in the editor,
or web browser of Eclipse environment.

Special case was designed for adding new code to the

local database, aimed for potential search event. User is
capable of selecting a sequence of code words and adding
them to a particular .xml file. After saving the code, it is
possible to search for it immediately.

User

(Programmer)

Programming Searching

Quick

documentation

search

Searching

through Google

Searching for

source codes

<<extend>>

Adding new

source code

<<extend>>

Eclipse environment
Plug-In

<<extend>>

Fig. 3 Use-Case diagram for the SearchFP Plug-In

3.3. Plug-In development support in Eclipse environ-
ment

Eclipse is Java application providing functionalities of
a loader. It is a simple program surrounded with amount
(hundreds to thousands) of plug-ins.

In comparison with common Java applications, plug-in
development is different. Plug-in is another Java applica-
tion that extends basic functionalities of the environment in
a certain way. Each plug-in can utilize services of other
plug-ins and it can provide its own functionality for the re-
mainder. All the plug-ins are loaded during runtime upon
user’s selection.

Eclipse environment has opened platform, what means
that it is designed in a way that its interfaces enable a user
to extend it.

3.4. Classes design

Classes of the SearchFP plug-in were designed accord-
ing to simplified class diagram shown in Fig. 4. Classes of
the searchfp package were generated automatically, pro-
viding direct connection to mechanisms that permit exten-
sion of the environment. These classes implement plug-in
maintenance, and life cycle.

Other classes were implemented separately. Key part of
the implementation lies at HtmlParser class designed for
lexical analyzer, parsing main page of the wxHaskell docu-
mentation and a module page. Lexical analysis is based on
documentation structure mentioned in Section 2.

Method parIndex() acquires url addresses of library
subpages (modules), that would be stored in a string vec-
tor, through distinguishing of auxiliary keywords as lexical
symbols, marked by bold font. If a lexical symbol has an
attribute value, it is displayed within angular brackets [5,6].

Auxiliary keywords of the file are defined by equations (1).

K

[[
< TD STYLE= \”padding−left :

1.25em;width : 44em\” >

]]
= key3

K [[HREF]] = key4
K [[< TD CLASS= \”s15\” >]] = key5

(1)

Syntax of recognized url address value Sval is defined
by grammar (2).

Sval → Letter { Letter | Digit } Su f f ix
Su f f ix → .html
Letter → a . . . z | A . . . Z
Digit → 0 . . . 9

(2)

The semantics of the transformation of url reference to
url symbol is given by equation (3).

U rl [[< A HREF= ”Sval” >]] = url〈Sval〉 (3)

where Sval is a string representing particular url address,
according grammar (2).

At each module page, parse() method acquires every
keyword and its description, and stores them in a hash ta-
ble. One keyword can match one or more descriptions. The
method distinguishes auxiliary keywords, searched key-
words, and the descriptions as lexical symbols [4, 6]:

Auxiliary keywords of the file are defined by equations
(4).

K [[< TD CLASS= \”s15\” >]] = key1
K [[decl]] = key2 (4)

Syntax of recognized keyword value Kval intended for

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 57

searching Tag is defined by grammar (5).

Tag → < Text >
Text → Printable Char { Printable Char }
Kval → (Letter | Digit) { Letter | Digit }
Letter → a . . .z | A . . .Z
Digit → 0 . . .9

(5)

where Printable Char is arbitrary printable character ex-
cept characters < and >.

The transformation is defined by equations (6) and (7).

K eyword [[Kval { Text }]] = keyword〈Kval〉
K eyword [[Tag]] = ε

(6)

where Kval is a string representing first word in the text
without html tags, and ε is an empty symbol.

H tml [[< A HREF= Text >{ Text }< /a>]]
= html〈< i > { Text }< /i >〉

H tml [[< IMG Text >]] = ε

(7)

where image tags are removed and hyperlink tags are re-
placed with font tags. The attribute value of html symbol
represents the description of recognized keyword, and ε is
an empty symbol.

Accessing

XmlFile

Action1 Action2

Action3

Action4

Action5ReadIni

QuickSearch

View

HtmlParser

Activator

Application

ActionBar

Advisor

Application

Workbench

Advisor

Application

Workbench

Window

Advisor

Perspective SearchFP

View ViewContent

Provider

ViewLabel

Provider

searchfp searchfp.other searchfp.actions searchfp.views

searchfp.parser

ActionBar

Advisor

Workbench

Window

Advisor

Workbench

Advisor

IApplication IPerspective

Factory

AbstractUI

Plugin

IWorkbench

Window

Action

Delegate

ViewPart

Fig. 4 Class diagram for the SearchFP Plug-In

3.5. Code database

Database dedicated for storing of auxiliary codes repre-
sents a simple .xml file, while name of the file is stored in
the configuration file with predefined name in.xml.
The structure of the database file is as follows

• <examples>, </examples> . . . tags representing
the beginning and end of the file.

• <codes>, </codes> . . . tags representing one
record with content consisting of one keyword and
one sequence of source code.

• <keyword>, </keyword> . . . tags representing key-
word dedicated to code search event.

• <code>, </code> . . . tags representing source code
pertaining given keyword. The code would be dis-
played as a searching result in a newly-formed tem-
porary file with .hs extension.

Searching for the code is preceded by parsing of the
.xml file, that results in creation of a new hash table with

keywords and codes. Each source code is stored in a vector
of strings, and each keyword matches one code vector only.

4. EVALUATION

Main advantages of the Eclipse SearchFP Plug-In v1.0.0
are as follows:

1. Fast and effective search directly in the environment.

2. Transparent form of the results view.

3. General usage possibility concerning other libraries
and languages.

On the other hand, the drawbacks are:

1. Slow initialization and parsing.

2. Necessity of Internet connection.

3. Need for saving sample codes in order to search for
them.

ISSN 1335-8243 c© 2010 FEI TUKE

58 Context Help Searching for wxHaskell Graphic Library

5. CONCLUSION

The current SearchFP Plug-In for Eclipse includes
searching for the keyword description in wxHaskell doc-
umentation and sample codes database, additional web-
based search, and new sample code storing availability as
well.

Lexical analysis considers the first word in each sepa-
rate block of documentation as a keyword, that is described
by the rest of the block. Each description is stored by the
hash table in the original html format, so search results
could be displayed in a transparent form, not differentiat-
ing from the initial documentation form significantly. Each
search event is used within the Eclipse environment, what
makes searching fast and effective.

Plug-in usage requires Internet connection with conse-
quence of slow initialization consisting of downloading and
parsing the documentation. This could be solved by mod-
ification of the standard configuration file searchfp.ini,
by replacement of library url urls with current documen-
tation address localized on user’s local system. However,
this step disables the Google Search option.

Due to analysis focused on Haddock documentation,
not wxHaskell documentation itself, utilization of the
SearchFP Plug-In is more general, so it could be used for
searching in any other library processed by the Haddock
tool. As lexical units are stored in the configuration file as
well, user is able to modify them according to his current
needs.

By far the greatest need for research is for further em-
pirical studies of features, that would make the initialization
faster, actual, and Internet independent at the same time.

Preliminary experiments show pros and cons of context
search based on lexical units and web-page structures. Con-
structed product forms a technical support for more sophis-
ticated and refined applications out of consideration to au-
tomation of static knowledge acquisition [1] or online ap-
plications reporting phishing suspects [10].

ACKNOWLEDGEMENT

This work is the result of the project implementa-
tion: Center of Information and Communication Tech-
nologies for Knowledge Systems (ITMS project code:
26220120020) supported by the Research & Development
Operational Program funded by the ERDF.

REFERENCES

[1] AL-HASHIMY, A.S.H.: Lexical Units in Ontological
Semantics, In: ISCIII ’07 International Symposium on
Computational Intelligence and Intelligent Informatics
(2007).

[2] Functional Graphic Library wxHaskell: Documenta-
tion, http://wxhaskell.sourceforge.net/doc

[3] KOLLÁR, J.: Functional Programming (in Slovak),
Elfa, Košice (2009).

[4] KOLLÁR, J.: Compilers (in Slovak), Elfa, Košice
(2009).

[5] KOLLÁR, J. – PORUBÄN, J. – VÁCLAVÍ K, P.: Com-
piling the Process Functional Programs, In: Proceed-
ings of the 3rd Slovakian-Hungarian Joint Symposium
on Applied Machine Intelligence, pp. 283–296 (2005).

[6] KOLLÁR, J. – FORGÁČ, M. – PORUBÄN, J.: Adap-
tiveness of Software Systems Using Reflection, In:
Acta Electrotechnica et Informatica, pp. 53–57, Elfa,
Košice (2007).

[7] LEIJEN, D.: wxHaskell: A Portable and Concise GUI
Library for Haskell, In: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell (2004).

[8] van NOORT, T.: Building GUIs in Haskell - Compar-
ing Gtk2Hs and wxHaskell, In: Sofware Technology
Colloquium, Utrecht University (2007).

[9] SKIENA, S.: The Algorithm Design Manual, Springer-
Verlag, Heidelberg (2008).

[10] WENYIN, L. – GUANGLIN, H. et al.: Phishing Web
page detection, In: Eighth International Conference on
Document Analysis and Recognition (2005).

[11] WIRTH, N.: Algorithms and Data Structures, Prentice
Hall, New Jersey (1985).

Received July 15, 2010, accepted November 24, 2010

BIOGRAPHIES

Ján Kollár is Full Professor of Informatics at Depart-
ment of Computers and Informatics, Technical university
of Košice, Slovakia. He received his M.Sc. summa cum
laude in 1978 and his Ph.D. in Computer Science in 1991.
In 1978-1981 he was with the Institute of Electrical Ma-
chines in Košice. In 1982-1991 he was with Institute of
Computer Science at the P.J. Šafárik University in Košice.
Since 1992 he is with the Department of Computer and
Informatics at the Technical University of Košice. In 1985
he spent 3 months in the Joint Institute of Nuclear Research
in Dubna, USSR. In 1990 he spent 2 months at the De-
partment of Computer Science at Reading University, UK.
He was involved in research projects dealing with real-
time systems, the design of microprogramming languages,
image processing and remote sensing, dataflow systems,
implementation of programming languages, and high per-
formance computing. He is the author of process functional
programming paradigm. Currently his research area covers
formal languages and automata, programming paradigms,
implementation of programming languages, functional pro-
gramming, and adaptive software and language evolution.

Emı́lia Pietriková is PhD Student at Department of Com-
puters and Informatics, Technical University of Košice,
Slovakia. He received his MSc. in 2010. The subject of his
research is metaprogramming, programming paradigms,
and exploiting functional paradigm in systems evolution.

ISSN 1335-8243 c© 2010 FEI TUKE

	Introduction
	Documentation and Haddock Tool
	Plug-In Design
	Requirement specification
	Use-cases
	Plug-in development support in Eclipse environment
	Classes design
	Code database

	Evaluation
	Conclusion

