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ABSTRACT
Quality of Service (QoS) in IP multimedia converged networks which provides different serving levels of different traffic flows is a

crucial issue. The token bucket mechanism is one of core QoS concept whose well understanding is required and improve modelling
and implementation techniques required in such multimedia networks. This paper describes and defines two basic network elements
- a work conserving link and a token bucket. We define two different types of a token bucket and we show that both of them can be
transformed into some work conserving link. Transformation means that the work conserving link allows input unit to pass if and only
if the token bucket would allow input unit to pass.
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1. INTRODUCTION

Technologies for transporting of a voice over IP net-
works has become one of the most important technologies
leading the evolution of network convergence process [4].
To provide guarantees required for best services perfor-
mance certain mechanisms needs to be implemented into
network. The token bucket and (work conserving) link are
one of fundamental QoS concepts which are used in such
multimedia networks.

In this paper, we show that how are related QoS (quality
of service) parameters of token bucket to QoS parameters of
work conserving link.

Work conserving link (Fig.1) is a network element,
which has a capacity, which represents how many input
units can be processed by one time unit. Capacity can vary
in time. If in one time unit arrives more input units than
the capacity is, then the rest of the input units is stored in
a input buffer, where they have to wait until capacity al-
low them to pass through the link. In real networks, buffer
has finite size, however in theoretical models we can cal-
culate also with infinite buffer size. If the buffer size is
finite and there are more inputs then buffer size plus capac-
ity, then the rest of inputs are thrown away, or we called
them lost inputs, because they will never pass through the
link.

Network elements like work conserving link occur in
many real networks and usually we need to know how many
input units are lost and how long do the input units have to
wait in input buffer.

Another network element, a token bucket (Fig. 2), occur
in many real networks, too, and usually we need to know
the same parameters as within a work conserving link. In-
put units can pass through the token bucket if there are free
tokens for them. Tokens represents permissions for input
units. Tokens are generated in every time unit, and the
number of generated tokens is called a capacity of a token
bucket. Capacity can be a constant or it can vary in time.
Generated tokens are stored in a token buffer, which has fi-
nite size. If there is no room in the token buffer, then the
rest of generated tokens is thrown away (they are lost). One
input unit always take one token when passing through a
token bucket. If there is no free token for a input, then the

input is stored in the input buffer, which is similar to a input
buffer of a work conserving link.

In this paper we will show, that from the view of input
units which are passing through the given network element,
token bucket is the same network element like work con-
serving link. Formally, for a given token bucket we can
construct a work conserving link, which allows input unit
to pass if and only if the token bucket would allow input
unit to pass.

We consider a discrete-time system with time indexed
by t = 0,1,2, . . . We describe a discrete-time process of any
measurable units by a sequence of variables A ≡ {A(t)|t =
0,1,2, . . .} or A ≡ {a(t)|t = 0,1,2, . . .}, where A(t) is cu-
mulative number of units by time t and a(t) is number of
units at time t. Usually, we assume that there are no units
at time 0, i.e. A(0) = 0 and a(0) = 0. We can compute
a(t) from A(t) or vice versa, i.e. A(t) = ∑

t
i=0 a(t) and for

t > 0 we have a(t) = A(t)−A(t − 1). Following the ter-
minology in communication networks, the unit can be an
arrival,packet or a byte or any other measurable unit.

An ideal link with capacity c (Fig.1) is a network ele-
ment for which the number of departures from the link is
bounded above by c packets per unit of time (per time slot).
The buffer at the link is assumed to be infinite. An ideal link
with capacity c is work conserving if the number of depar-
tures from the link is c packets pre unit of time when there
are backlogged packets in buffer. We denote buffer length
(queue) process by Q and departure process by B. To be
precise, let define work conserving link as follows.

Definition 1. Work conserving link is set of four processes
A,C,Q,B. We say that a(t) is the number of arrivals at time
t, c(t) is the capacity at time t, q(t) is the queue length at
time t and b(t) is the number of departures at time t. Queue
process must satisfy Lindley equation for t ≥ 0

q(t +1) = (q(t)+a(t +1)− c(t +1))+, (1)

where x+ = max{x,0}. Departure process B must satisfy

B(t) = q(0)+A(t)−q(t). (2)

Work conserving link is one of the most basic network
elements. Therefore, there are known many theoretical and
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practical results for this element, i.e. theory of effective
bandwidth. In this paper we will show that another network
element (token bucket) can be modelled by work conserving
link.

Fig. 1 Work conserving link

2. VARIOUS TYPES OF TOKEN BUCKET

As shown in Fig. 2, a token bucket consists of two
buffers: a packet buffer and a token buffer. The size of
the packet buffer is assumed to be infinite and the size of
token bucket is h. A packet that arrives at a token bucket
and finds a token in the token buffer will take the token and
leave the token bucket immediately. Otherwise, it will be
stored in the packet buffer until another token is generated.
Tokens are generated at rate c, i.e. c tokens are generated
per unit of time. A token will be added to the token buffer
if the token buffer is not full.

Fig. 2 Token bucket

Let consider that in one time slot is generated 1 token
and 1 packet arrives. If the token is generated before the
packet arrives, then it has to stored in token buffer and af-
ter the packet arrives they both will leave the token bucket.
But, if the token buffer is full, then the token cannot be
stored and it is thrown away. However, if the token is gen-
erated after packet arrives, then they leave token bucket im-
mediately and the token does not have to be stored in the
token buffer.

Therefore, we define two basic types of a token bucket.
First one is more typical and it assumes that all packets ar-
rive before all tokens in one time slot. Second one assumes
that all tokens arrive before all packets in one time slot.

Definition 2 (Token bucket). Token bucket is set of five pro-
cesses A,C,Q,P,B with constant h. We say that a(t) is the
number of arrivals at time t, c(t) is the number of generated
tokens at time t, q(t) is the arrivals queue length at time t,
p(t) is the token queue length at time t, b(t) is the number

of departures at time t and h is token buffer size. Processes
must satisfy following equations for all t ≥ 0

q(t +1) = (q(t)+a(t +1)− p(t)− c(t +1))+ (3)
p(t +1) = min{(p(t)+ c(t +1)−q(t)−a(t +1))+

,h} (4)
B(t) = q(0)+A(t)−q(t). (5)

Definition 3 (Token bucket∗). Token bucket∗ is set of five
processes A∗,C∗,Q∗,P∗,B∗ with constant h∗. We say that
a∗(t) is the number of arrivals at time t, c∗(t) is the num-
ber of generated tokens at time t, q∗(t) is the arrivals queue
length at time t, p∗(t) is the token queue length at time t,
b∗(t) is the number of departures at time t and h∗ is the to-
ken buffer size. Processes must satisfy following equations
for all t ≥ 0

q∗(t +1) = (max{q∗(t)− p∗(t)− c∗(t +1),−h∗}
+a∗(t +1))+ (6)

p∗(t +1) = (min{−q∗(t)+ p∗(t)+ c∗(t +1),h∗}
−a∗(t +1))+ (7)

B∗(t) = q∗(0)+A∗(t)−q∗(t). (8)

3. TRANSFORMATIONS

Next, we will show how can we model both types of to-
ken bucket by work conserving link. First transformation
(token bucket) is well-known, see for example [1], [6, 8].
Second transformation is analogical to first one, however, it
is a new result.

3.1. Token bucket

Note that in token bucket cannot be packets in packet
buffer and tokens in token buffer at the same time, because
packets should already leave token bucket if there are to-
kens. It means that for all t ≥ 0 one of the values q(t) or
p(t) must be zero. So, let look at the new process/variable

z(t) = q(t)− p(t). (9)

In this case we look at tokens as if they were negative pack-
ets. The important fact is that we can calculate q(t) and p(t)
from z(t)

• z(t)> 0
If the difference of q(t) and p(t) is positive, then p(t)
must be zero and so we have q(t) = z(t) and p(t) = 0.

• z(t) = 0
If the difference of q(t) and p(t) is zero, then both
values must be same, thus, both must be zeros, so we
have q(t) = 0 and p(t) = 0.

• z(t)< 0
If the difference of q(t) and p(t) is negative, then q(t)
must be zero, so we have q(t) = 0 and p(t) =−z(t).

To abbreviate the notation, we can write

q(t) = (z(t))+ (10)
p(t) = (−z(t))+ (11)
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We see in Fig. 3 what happens, if we concatenate packet
buffer and token buffer in one buffer z(t). From definition
of z(t) we have also following recurrent equation for all
t ≥ 0

z(t +1) = max{z(t)+a(t +1)− c(t +1),−h}. (12)

Fig. 3 Token bucket’s modification for z(t)

We see that we can obtain Lindley equation (1) from
(12) by adding h to right side. So we let y(t) = z(t)+h and
then we obtain

y(t +1) = z(t +1)+h

y(t +1) = max{z(t)+a(t +1)− c(t +1),−h}+h

y(t +1) = max{y(t)−h+a(t +1)− c(t +1),−h}+h

y(t +1) = max{y(t)+a(t)− c(t +1),0}
y(t +1) = (y(t)+a(t +1)− c(t +1))+.

We can see in Fig. 4 what happens, if we add h to z(t).
Still, important fact is that we can calculate q(t) and p(t)
from z(t)

q(t) = (y(t)−h)+ (13)
p(t) = (h− y(t))+. (14)

Fig. 4 Token bucket’s modification for y(t)

Theorem 1. Let (A,C,Q,P,B,h) be a token bucket and
let (AL,CL,QL,BL) be a work conserving link. If A = AL,
C =CL, p(0) = h and q(0) = qL(0) = 0, then for all t ≥ 0

q(t) = (qL(t)−h)+

p(t) = (h−qL(t))+

B(t) = BL(t)+min{qL(t),h}.

Proof. We have already proved first two equations (see
(13) and (14)). So, next we prove only equation for token
bucket’s output process. We know that

BL(t) = A(t)−qL(t)+qL(0)
B(t) = A(t)−q(t)+q(0),

and if we use qL(0) = q(0) = 0 then we get

B(t) = BL(t)−q(t)+qL(t)

B(t) = BL(t)− (qL(t)−h)++qL(t)

B(t) = BL(t)−max{qL(t)−h,0}+qL(t)

B(t) = BL(t)−max{−h,−qL(t)}
B(t) = BL(t)+min{qL(t),h}.

For example, if we calculate that Pr(qL(t) < x) � e−θx

(i.e. using theory of effective bandwidth), then we can write
also Pr(q(t)< x−h)� e−θx.

3.2. Token bucket∗

Analogically, we can prove transformation theorem for
token bucket∗.

Theorem 2. Let (A∗,C∗,Q∗,P∗,B∗,h∗) be a token bucket∗

and let (AL,CL,QL,BL) be a work conserving link. If A∗ =
AL, (∀t ≥ 0)c∗(t + 1) = cL(t), c∗(0) = 0, p∗(0) = h∗ and
q∗(0) = qL(0) = 0, then for all t ≥ 0

q∗(t +1) = (qL(t)+a(t +1)−h∗)+

p∗(t +1) = (h−qL(t)−a(t +1))+

B∗(t +1) = BL(t +1)− (qL(t)+a(t +1)−h∗)+

+qL(t +1)

Proof. Let denote z∗(t) = q∗(t)− p∗(t) for all t ≥ 0. Then
we have for all t ≥ 0

z∗(t +1) = q∗(t +1)− p∗(t +1)
= (max{q∗(t)− p∗(t)− c∗(t +1),−h∗}

+a∗(t +1))+

−(min{−q∗(t)+ p∗(t)+ c∗(t +1),h∗}
−a∗(t +1))+

= (max{z∗(t)− c∗(t +1),−h∗}+a∗(t +1))+

−(min{−z∗(t)+ c∗(t +1),h∗}−a∗(t +1))+

= max{z∗(t)− c∗(t +1),−h∗}+a∗(t +1)

and we have also z∗(0) = q∗(0)− p∗(0) =−h.
Let denote y∗(t) = z∗(t)+h∗ for all t ≥ 0. Then we have

for all t ≥ 0

y∗(t +1) = max{z∗(t)− c∗(t +1),−h∗}+a∗(t +1)+h∗

= max{z∗(t)+h∗− c∗(t +1),0}+a∗(t +1)
= (y∗(t)− c∗(t +1))++a∗(t +1)

and we have also y∗(0) = z∗(0)+h = 0.
Next, we use mathematical induction to prove that for

all t ≥ 0

y∗(t +1) = qL(t)+a(t +1) (15)

• t = 0

y∗(1) = (y∗(0)− c∗(1))++a∗(1) = 0+a(1)
= qL(0)+a(1)
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• induction step

y∗(t +2) = (y∗(t +1)− c∗(t +2))++a∗(t +2)
y∗(t +2) = (y∗(t +1)− c(t +1))++a(t +2)
y∗(t +2) = (qL(t)+a(t +1)− c(t +1))+

+a(t +1)
y∗(t +2) = qL(t +1)+a(t +1).

If we use

q∗(t +1) = (y∗(t +1)−h)+ (16)
p∗(t +1) = (h− y∗(t +1))+, (17)

together with (15) then we get desired results for q∗(t +1)
and p∗(t +1).

Finally, we calculate B∗(t). We know that

BL(t +1) = A(t +1)−qL(t +1)+qL(0)
B∗(t +1) = A∗(t +1)−q∗(t +1)+q∗(0),

and if we use qL(0) = q∗(0) = 0 and A∗(t) = A(t) then we
get

B∗(t +1) = BL(t +1)−q∗(t +1)+qL(t +1)
B∗(t +1) = BL(t +1)− (qL(t)+a(t +1)−h∗)+

+qL(t +1).

If this result for B∗(t +1) is hard to calculate, then we can
use following simple inequalities

B∗(t +1) ≤ BL(t +1)+h∗. (18)
B∗(t +1) ≥ BL(t +1). (19)

Theorem 2 indeed says that token bucket∗ can be mod-
elled by work conserving link, which has same arrival pro-
cess and shifted capacity (token rate) process by one time
slot.

Moreover, if all processes are random variables and they
all converges, i.e. for all k

Pr( lim
t→∞

a∗(t) = k) = Pr( lim
t→∞

aL(t) = k)

= Pr(a∗(∞) = k)

Pr( lim
t→∞

c∗(t +1) = k) = Pr( lim
t→∞

cL(t) = k)

= Pr(c∗(∞) = k)

Pr( lim
t→∞

qL(t) = k) = Pr(qL(∞) = k),

then as a direct consequence of theorem 2 we have also

Pr( lim
t→∞

q∗(t) = k) = Pr((qL(∞)+a(∞)−h∗)+ = k)

= Pr(q∗(∞) = k) (20)

and the probability density function of random variable
q∗(∞) can be calculated for all k > 0 from probability den-
sity functions of random variables qL(∞) and a(∞) as fol-
lows

Pr(q∗(∞) = k) =
k+h∗

∑
i=1

Pr(qL(∞) = i) ·Pr(a(∞) = h∗+k− i).

(21)

And if a(t) is non-negative random variable, then we have
also for all k ≥ 0

Pr(q∗(∞)> k)≥ Pr(qL(∞)> k+h∗), (22)

what is just simply inequality that can be derived from fact
that queue length of token bucket∗ is always greater or equal
to queue length of token bucket (if they have same arrival
and token rate processes).

4. CONCLUSION

We have shown the approach that different types of to-
ken bucket can be modelled by a basic network element -
a work conserving link. This is very useful result, because
now it is not necessary to analyse the token bucket or to
make any extra research about it. We can just use all known
results for work conserving link and apply them to the token
bucket.

Therefore, in the future research we will focus on the
work conserving link in more complicated conditions. De-
spite it is a well-known model, there are still many open
problems which solutions would be very useful for dimen-
sioning real-world networks.
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nologies, University of Žilina, 2005). Since 2010 she is
working as an assistant professor at the Department of In-
foComm Networks at the Faculty of Management Science
and Informatics at University of Žilina and her research
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