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ABSTRACT
We present a voting scheme in which shares of the ballots are sent to multiple talliers. The talliers operate in parallel and cooperate

together to count the ballots by using the technique of the Secure Multiparty Computations (SMPC) in the Virtual Ideal Functionality
Framework (VIFF). The counting process is fair since no single tallier can gain knowledge about the ballots or can count the ballots
without cooperating with other talliers.
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1. INTRODUCTION

There are fundamentally different approaches to voting
known in literature. One approach is blind signatures and
anonymous channels [2]. The anonymous channels can be
implemented using mix-nets or based on some physical as-
sumption, but anonymous channels are quite difficult to im-
plement in practice. In another approach, there are several
servers to count the ballots. In this case the servers have
the ballots of the voters as secret shares among them [1, 3].
The servers cooperate to count the ballots and publish the
tally. This papers deals with this approach. The third ap-
proach is the use of homomorphic encryption. In this case
a voter simply publishes an encryption of his vote. The en-
cryptions can be combined into an encryption of the result,
and finally a number of decryption servers can cooperate to
decrypt the result [4]. In this approach, the private key is
needed to be secret-shared among the decryption servers.

Internet voting allows voters to cast their ballots from
any location (remote Internet voting) or from a controlled
environment (polling booth based Internet voting). Both of
these approaches have benefits and limitations. If we allow
a voter to vote from any location then we cannot guarantee
that the voter is safe from vote-buyer or coercer. To pro-
tect the voter from these corrupted parties, polling booth
based Internet voting is preferred. Since this environment
is controlled we can expect that the voter is free from the
corrupted parties. The voting scheme presented in this pa-
per does not distinguish between remote Internet voting and
polling booth based Internet voting.

To protect against vote-buying the voters should not be
allowed to produce a receipt to prove which candidate the
ballot is cast. We propose a Voter Computer (VC) as a
ballot-generator for performing cryptographic tasks on be-
half of the voter. The voter selects his vote and sends the
vote to the VC. The VC then creates a ballot from the vote
and appends a nonce value to the ballot. The VC also sends
this nonce value to the voter. The voter uses this nonce
value for verifying the counting process.

In our voting scheme, we assume that only eligible vot-
ers will be equipped with smartcard containing some pri-
vate information. The system enforces that only authorized
voters can vote. The system uses Secure Multiparty Com-
putations (SMPC) for tallying ballots. The SMPC is a se-

cure computation where a number of parties P1, . . . ,Pn have
private inputs x1, . . . ,xn by which they compute some func-
tion f on these inputs, where f (x1, . . . ,xn) = (y1, . . . ,yn)
such that Pi learns yi but nothing else. The parties are mu-
tually mistrusting so no input is shared between them. In
MPC, the tallying is correct as long as 2/3 of the parties are
honest (for active adversaries) [5]. For passive adversaries,
the number is 1/2.

The structure of this article. Section 2 discusses this
work in relation to previously published papers. The voting
scheme is presented in Section 3. The Paillier cryptosys-
tem is briefly presented in Section 4, while key generation
and ballot construction are described in Sections 5 and 6
respectively. The ballot counting is described in Section 7.
We also briefly explain the implementation issues in this
section. Section 8 includes the summary of the work and
future directions.

2. RELATED WORK

The Norwegian Ministry of Local Government and Re-
gional Development (KRD) decided to start an e-voting pi-
lot project (E-valg 2011 Project) for the municipal and re-
gional elections of 2011. If this pilot project gives a suc-
cessful result, the project will be continued and extended to
be used in the general elections of 2013. The KRD, and the
E-valg 2011 project group, has created a website [7] where
the general information about the project is available. The
KRD has decided that the E-valg 2011 project will be im-
plemented as an open source project with a hope to increase
public trust in the voting system [8].

Helios is a verifiable online election [9] system. In this
system, when a voter casts a vote, the voter gets a smart
tracker to track his vote all the way to the tally. But, no
one knows how the voter voted. Only the voter can track
his vote and everyone can check the tally. The technology
provided by Helios is open.

Secret sharing is an essential part of multiparty compu-
tations. The process of distributing a secret among a group
of participants by allocating shares of the secret is first pub-
lished by Shamir [15] in 1979. Blakley also publishes secret
sharing in [16] in 1979. The multiparty computation based
on Shamir’s secret sharing scheme using a multiplication
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protocol is presented in [5]. This gives a versatile system
where the counting algorithm can be tailored to different
election rules. Paillier’s Probabilistic Encryption scheme is
presented in [14].

A non-interactive zero-knowledge protocol for ballot
verification is published in [11] and the universal compos-
ability of that protocol is published in [13]. Multiple count-
ing servers are proposed to count and publish the ballots in
both [11] and [13]. In [12], the authors present an Internet
voting scheme using multiparty computations. Like [11]
and [13], multiple multiparty talliers are proposed to count
ballots in [12].

Our work is based on the ballot counting described in
[11]. We modify the ballot construction part and then im-
plement the ballot counting part using the multiparty com-
puation in the VIFF platform [10]. Encryption is carried
out according to Paillier’s Probabilistic Encryption scheme
[14].

3. THE VOTING SCHEME

The voting scheme is shown in Fig. 1. The voter authen-
tication is done by using a smartcard with fingerprint tech-
nology. The smartcard contains the fingerprint reference-
features of the voter, the private key of the voter, the pri-
vate key for a voter group signature, and the public key of
the Authentication Server (AS). The public key of the MPC
talliers are fetched from the database using the voter side
web application. We assume that the group in the group
signature consists of only eligible voters.

First, the voter inserts the smartcard into the smartcard
reader and supplies his fingerprint. The smartcard verifies
the fingerprint and the web server verifies the smartcard. If
the verification is ok, then the voter gets access to the voting
web page.

Then the voter chooses a candidate and casts his vote.
The voter sends his vote to the Voter Computer (VC). The
VC generates a ballot from the vote and adds a randomly
generated nonce value with the ballot. We assume that
the length of the nonce is long enough to avoid duplicate
nonce values. The VC sends this nonce value to the voter.
Voter’s smartcard signs and encrypts the ballot first using
the private key for group signature and the public key of the
MPC Tallier (MPCT), then the private key of the voter and
the public key of the Authentication Server (AS). The VC
sends this signed and encrypted ballots to the AS. The AS
decrypts the ballot and verifies the signature of the voter.
The MPC talliers fetch the ballots from the AS when vot-
ing period is over. The MPC talliers remain idle during the
voting period. These talliers verify the group signature, and
can also verify the validity of the ballots by using the non-
interactive zero knowledge protocol [11]. Then the MPC
talliers cooperate to add the ballots and to publish the tally.
The MPC talliers also publish the nonce values that were
added by the VC. Now, the voters can see the nonce val-
ues and verify that the counting process is correct. Since
the same nonce values is published by all of the MPC tal-
liers, no single MPC tallier can alter or delete a nonce value
without detection.

4. PAILLIER CRYPTOSYSTEM

In this section we briefly describe the Paillier Cryp-
tosystem with application to Internet voting.

Pascal Paillier proposed a cryptosystem in [14] which is
a new homomorphic cryptosystem. Paillier cryptosystem is
a probabilistic encryption based on computations over the
group Z∗n2 , where n is an RSA modulus. This cryptosys-
tem has some very attractive properties. For example, it is
homomorphic, and allows encryption of many bits in one
operation with a constant expansion factor, and allows ef-
ficient decryption. Thus it becomes interesting for many
cryptological protocols such as electronic voting and mix-
nets.

Though Paillier pointed out that his encryption scheme
is homomorphic, and is applicable to electronic voting, in
order to apply it in voting, two important building blocks
are missing [6]. These are an efficient proof of validity of
the ballot and an efficient threshold variant of the scheme
so that the tally can be decrypted without allowing a single
tallier the possibility of learning how a voter voted.

In our voting scheme, we propose that the MPC talliers
prove the validity of the ballots non-interactively using the
protocol presented in [12]. Also, the MPC talliers count the
ballots using the secure multiparty computation operation.

5. KEY GENERATION

In our voting scheme, key generation is carried out ac-
cording to Paillier’s Probabilistic Encryption scheme. In
advance, two values are agreed on by the Voter Computer
(VC) and the MPC talliers. These values are: a prime num-
ber e which is larger than the total number of voters, and
a security parameter k. The MPC talliers now compute
n = p ∗ q by picking two primes p and q, both with length
k/2 bits, such that e divides p−1 but does not divide q−1.

The MPC talliers’ private key is computed as d =
lcm(p− 1,q− 1), where the function lcm(a,b) gives the
least common multiple of a and b.

Note that any value λ such that λ mod n ∈ Z∗n and
λ = 0 mod d may be used as private key in this scheme.
Then the MPC talliers randomly pick a base g < n2 such
that n divides the order of g. This condition is satisfied if
gcd(L(gd mod n2),n) = 1, where the function L is defined
as

L(x) =
x−1

n
, ∀x ∈ {x < n2|x = 1 mod n}.

The key pair generation is now completed, with public
key (g,n) and private key d.

6. BALLOT CONSTRUCTION

This section describes how the ballots are created and
inserted into a database. Note that the MPC talliers are not
involved with ballot generation.

After voter authentication, the voter side web applica-
tion fetches the public keys (g0,n0),(g1,n1),(g2,n2) from
the database. A vote is represented by V = (v0,v1,v2)
where vi = 1 if the vote was given for candidate i, and
0 otherwise. For instance, a vote for candidate 2 gives
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Fig. 1 Internet Voting exemplified with 3 MPC Talliers (MPCT). The Voter’s Computer (VC) constructs and sends the ballot to the
Authentification Server (AS).

V = (0,0,1). Here, we describe the ballot generation pro-
cedure for 3 candidates. This procedure can similarly be
extended to an arbitrary number of MPC talliers.

For 3 candidates, nine values r00,r01, ...,r12,r22 (where
each ri j ∈Z∗n j

) are chosen randomly by the Voter Computer
(VC). These random values satisfy

v0 = (r00 + r01 + r02) mod e
v1 = (r10 + r11 + r12) mod e
v2 = (r20 + r21 + r22) mod e.

Now, the ballot B = (b0,b1,b2) for 3 candidates is gen-
erated as follows.

b0 = (g0
r00(mod n2

0), g1
r01(mod n2

1), g2
r02(mod n2

2))

b1 = (g0
r10(mod n2

0), g1
r11(mod n2

1), g2
r12(mod n2

2))

b2 = (g0
r20(mod n2

0), g1
r21(mod n2

1), g2
r22(mod n2

2))

Here, B basically consists of nine cipher texts. That is,
the nine ri j plaintexts are encrypted using the MPC talliers’
public keys.

The ballot is now ready to be inserted into the database.
Our ballot encryption is modified Paillier encryption

[14] in order to easy implementation and make our counting
process verifiable.

7. BALLOT COUNTING

7.1. Tally calculation

As mentioned earlier, during the voting period, the MPC
talliers remain idle. When all k ballots (k is the total number
of ballots cast by the voters) are registered in the database,
of AS, each of the MPC talliers is instructed by the authen-
tication server to fetch the ballots and begin the counting
procedure.

The first step in this procedure is to compute a tally
S = (s0,s1,s2) by multiplying the individual encrypted

shares of the k ballots as follows:

s0 =

(
k

∏
i

b(i)0 [0] mod n2
0 ,

k

∏
i

b(i)0 [1] mod n2
1 ,

k

∏
i

b(i)0 [2] mod n2
2 )

s1 =

(
k

∏
i

b(i)1 [0] mod n2
0 ,

k

∏
i

b(i)1 [1] mod n2
1 ,

k

∏
i

b(i)1 [2] mod n2
2 )

s2 =

(
k

∏
i

b(i)2 [0] mod n2
0 ,

k

∏
i

b(i)2 [1] mod n2
1 ,

k

∏
i

b(i)2 [2] mod n2
2 )

Here, b(i)x [y] is from ballot number i, where y 6 2.
The results (s0,s1,s2) of the above multiplications are

called sub-tallies. The sub-tallies are decrypted by the MPC
talliers, and also used for verifying the counting procedure
as explained in the following.

7.2. Sub-tally decryption

As shown in the previous sub-section, each of the nine
sub-tallies is a product of ciphertexts encrypted with the
MPC tallier’s public key. Because of homomorphic prop-
erties of the scheme, decrypting all the ballots and comput-
ing the sum of the plaintexts is equivalent to decrypting the
product of the ciphertexts, i.e. the sub-tallies.

This implies,

k

∑
i

D(b(i)x [y]) = D(sx[y]).

Here, the function D(c) is the decryption of ciphertext
c. Homomorphism is achieved because, clearly

sx[y] =
k

∏
i

b(i)x [y] mod n2
y =

k

∏
i

gr(i)xy
y mod n2

y =

gΣk
i r(i)xy

y mod n2
y
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As a result, only the sub-tallies are needed to be de-
crypted, meaning that the number of ballots does not affect
the decryption time complexity. MPC tallier y decrypts
sx[y], where x ∈ {0,1,2}. Here,

D(sx[y]) =
L(sx[y]dy mod n2

y)

L(gdy
y mod n2

y)
.

7.3. Ballot counting

When every MPC tallier decrypts its corresponding sub-
tally, no more decryption is required. To compute the total
tally, the MPC talliers need to collaborate using their sub-
tallies. There are two approaches for obtaining this.

In the first approach, each MPC tallier publishes its de-
crypted sub-tally such that all MPC talliers can calculate
the final tally independently.

In the second approach, every MPC tallier inputs its de-
crypted sub-tally to an agreed Secure Multiparty Computa-
tion (SMPC) function which outputs the final tally.

With the first approach the MPC talliers can verify the
counting procedure as described in the following.

Publication of the decrypted sub-tallies. With this ap-
proach, the MPC talliers publish their decrypted sub-tallies
to each other. A MPC tallier may compute the final tally
ν = (ν1,ν2,ν3), where νx is the total number of ballots for
candidate x.

This is easily calculated as

νx = D(s
′
x[0])+D(s

′
x[1])+D(s

′
x[2]).

Where D(s
′
x[y]) is a decrypted sub tally published by tallier

y. Note that this gives

νx =
k
∑
i

r(i)x0 +
k
∑
i

r(i)x1 +
k
∑
i

r(i)x2 =
k
∑
i

v(i)x ,

where r(i) is from ballot number i, if all talliers operated as
uncorrupted.

Verification of the counting process. When the de-
crypted sub-tallies are published by the MPC talliers, then
one MPC tallier can verify that the other MPC talliers have
published the correct sub-tally.

This is possible since the MPC talliers know both the
public keys and the plaintexts. So they can encrypt the
published plaintexts, and verify that the ciphertexts equal
the sub-tallies. More specifically, each MPC tallier checks
that for all x,y = 0,1,2, the equality

gD(s
′
x[y])

y mod ny = sx[y]

is correct. If one or more does not hold, the ballot counting
should be assumed corrupted.

Secure multiparty computation. It may be desirable
that each MPC tallier keeps its decrypted sub tallies secret.
But how may the final tally be calculated if the talliers do
not publish their individual sub-tallies?

The answer is Secure Multiparty Computation (SMPC).
By employing a summation SMPC function, the MPC tal-
liers can find the sum of their decrypted sub-tallies without
revealing the actual plaintexts to each other.

Here, we describe how the MPC talliers compute the
total number of ballots for candidate 0 using the secure
multiparty computation. The MPC talliers repeat the same
procedure for candidates 1 and 2. The procedure employs
Shamir’s secret sharing [15] and secure multiparty addition.

First each server y ∈ {0,1,2} generates a polynomial

fy(x) = py +αyx+βyx2.

Here py is MPC tallier y’s decrypted sub-tally for candidate
0 (D(s0[y])), while αy and βy are secret, random integers
chosen by MPC tallier y.

The tallier y now uses the polynomial to generate secret
shares of py:

fy(1) = py +αy +βy
fy(2) = py +2αy +4βy
fy(3) = py +3αy +9βy.

These shares are securely distributed among the MPC
talliers such that tallier y will know f0(y+1), f1(y+1) and
f2(y+1).

Now, define the function F as F(x) = f0(x)+ f1(x)+
f2(x). Note that

F(0) = p0 + p1 + p2 =
k
∑
i

r(i)00 +
k
∑
i

r(i)01 +
k
∑
i

r(i)02 =
k
∑
i

v(i)x ,

which is the total number of ballots for candidate 0.
This is what the MPC talliers need to compute. Because

of how the shares were distributed, each tallier y can now
calculate F(y+1).

By publishing these F function values to each other, all
talliers may compute F(0) using polynomial interpolation.

Now all of the MPC talliers know the total number of
ballots for candidate 0 without revealing their decrypted
sub tallies. As mentioned, the MPC talliers need to repeat
this procedure twice more to find the number of total ballots
given for candidate 1 and 2.

Implementation issues. This functionality is imple-
mented using the Python framework Virtual Ideal Func-
tionality Framework (VIFF) [10]. VIFF is implemented in
Python using Twisted and can run on any platform where
Python runs in Linux,Windows, or Mac OS X. We like
to mention that VIFF is Free Software, licensed under the
GNU LGPL.

VIFF allows to do secure multi-party computations, in
which for example, three MPC talliers cooperate to count
the ballots. Using VIFF, the talliers can count the ballots
without revealing anything about their sub-tallies.
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The described counting process is implemented in
Python, using the Virtual Ideal Functionality Framework
(VIFF) for SMPC. ’Virtual Ideal Functionality’ should in
this case be interpreted as a real-world functionality that is
indistinguishable from an ideal one (in our case, a trusted
third party). VIFF is a general software framework for de-
veloping secure multiparty computation. It provides soft-
ware modules which abstract complex cryptographic and
mathematical details into an easy way to use API for devel-
opers.

In our implementation, the VIFF framework is used to
connect the talliers, and for executing the SMPC summa-
tion. First, the three talliers are launched. They generate
key pairs, store the public key in a database and connect to
each other. In the voting stage, an arbitrary number of bal-
lots (but less than e) may be casted. The public keys are
fetched from the database, and the ballots are constructed
locally at the Voter Computer before these are inserted into
the database. During the voting stage the talliers remain
idle, waiting for a Remote Procedure Call (RPC) from the
Authentication Server (AS) when the voting is complete.
This invokes the counting procedure.

The scheme was implemented in a very small scale,
with security parameter k as small as 20. Further work will
enable for larger values for these variables, allowing more
appropriate key sizes. The scheme can be extended to an
arbitrary number of MPC talliers, instead of a fixed number
as in this implementation, where three talliers were used.

8. CONCLUSIONS

We have shown how a ballot is sent as encrypted shares
to multiple talliers. The talliers cannot individually reveal
the content of the encrypted ballots. They must cooperate
to jointly count the ballots. The counting process provides
fairness since no single tallier can count or publish the tally.

We have presented a homomorphic multiparty count-
ing with verification to work with the ballots according to
the scheme of [11]. We present a variation of the Paillier
cryptosystem for ballot construction for the verifiability of
our counting process. Also, we show the secure multiparty
computation for ballot counting. Finally, we implement the
multiparty counting process on the VIFF platform.

The security proof of the modified Paillier cryptosys-
tem and the verifiability of the counting process in the Pail-
lier cryptosystem and the analysis on the practical compu-
tational efficiency are open problems.
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