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ABSTRACT
Solving a set of linear equations is a common problem and often it is transformed into a task of solving a set of linear congruencies.

Solving a set of linear congruencies also appears frequently in cryptography and therefore effective solving algorithms are needed. All
algorithms solving this task have their bottlenecks in calculating modular reduction as they need to divide. The problem with division
or floating point remainder instruction is that these instructions have high latencies and are not pipelined. This paper compares several
approaches that can be used to perform modular reduction after multiplication in integer and floating point arithmetic and its purpose
is to offer a highly system optimized algorithm for modular multiplication with reduction using SIMD processor extensions.
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1. INTRODUCTION

Solving a set of linear equations (SLE)s is a basic task of
linear algebra and for these purposes a computer implemen-
tation of floating point arithmetic as defined by the IEEE
754 [5] standard is used. Since precision of this arithmetic
may not be sufficient for certain tasks, modular arithmetic
is often used to extend it. The entire SLE is brought from
floating point set to an integer domain with a transforma-
tion and possibly many sets of linear congruencies (SLC)s
are solved instead [9]. Gaussian elimination is then used
to obtain a solution to each SLC and once solutions to in-
dividual SLCs are available, a floating point solution is re-
constructed with another transformation. Note there are no
intermediate rounding errors committed during the solving
process as the entire calculation occurs in an integer set
and therefore a choice of the method to solve the SLC can
be just Gaussian elimination with modular pivotization [8].
The pivotization is necessary as there is a higher probabil-
ity that a zero occurs during the elimination process. Other
advantage of this approach is that we can easily make the
code run in parallel for large SLEs. This advantage is par-
ticularly interesting as it is useful to solve SLE or SLCs in
a parallel environment on nondedicated clusters rather than
special architectures. This paper deals with system opti-
mization of the SLC calculation process, namely modular
multiplication with reduction, and compares traditional ap-
proach performed in integer arithmetic to an approach per-
formed in floating point arithmetic with and without the use
of SIMD vector instructions on Intel x86 type processors.

2. SUBJECT

The standard approach of solving an SLE in modular
arithmetic consists of 4 steps [7, 9]. These steps are scal-
ing transformation, SLE reduction into SLCs, SLCs solving
process, and finally a backward transformation.

1. Scaling transformation. This transformation takes
the input SLE and performs scaling of its matrix and
right hand side by a constant. The scaling procedure

is necessary to ensure that the input SLE is repre-
sentable within the integer set. Scaling can be per-
formed for each row of the input matrix indepen-
dently or globally for the entire SLE.

2. SLE reduction into SLCs. A number of prime num-
ber modules q is chosen (typically > 1000) and mod-
ular reduction is performed for the entire SLE pro-
ducing as many SLCs as the number of modules. A
proper choice of modules is important as modular
reduction will be often needed. In order to achieve
most speed, modules are typically 15- or 16-bit as a
product of two such numbers fits perfectly in a 32-bit
computer register and modular reduction can be ap-
plied afterwards. The modular reduction process re-
ducing SLE into SLC is done by using either fmod or
remainder function from the “C” math library [1].
The fmod function calculates a result in Zm and uses
the fprem instruction [6] for these purposes, while
the remainder function is useful if we are interested
in obtaining a result in a symmetric residue system
Sm [4]. The remainder function uses the fprem1
instruction [6] which conforms to the IEEE standard
in contrary to the fmod function.

3. Solving SLCs. SLCs obtained from the previous step
are solved in this step. As they have nothing in com-
mon, they can be solved independently. If there is an
error during the SLC solving process such as that a
multiplicative inverse does not exist, we simply drop
the module from the computation and continue work-
ing without that particular SLC. We can safely use
Gaussian elimination with modular pivotization as
there are no rounding errors committed during this
step. The modular pivotization differs from full pivo-
tization that it just chooses the first nonzero element
before switching appropriate rows and/or columns in
the matrix [9]. The most frequent operation during
the elimination process is a modular multiplication
with reduction which is this paper about.
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4. Backward transformation. After we have solved
SLCs, we obtain up to that many partial solutions that
we recombine back into the floating point set yielding
an SLE solution. This is done with a backward trans-
formation using a mixed radix conversion (MRC)
[4, 8] rather than the Chinese Remainder Theorem
(CRT). The backward transformation with MRC is
favored over the standard backward transformation
based on the CRT as it can be performed in modular
arithmetic and does not need a product of many mod-
ules which would not fit into a computer register.

3. METHODS

Sections 3.1 through 3.5 provide a detailed description
of approaches that we have taken. They are all used to find
a remainder mod m after finding a product of two integers
a and b and correspond to z = ( a * b ) % m in the C
programming language. This task is the most frequent oper-
ation during the SLC solving process as we need to perform
a reduction mod m after every operation in order to avoid
overflow in a computer register. The remainder mod m is
calculated during a modular version of Gaussian elimina-
tion with a complexity of O(n3q), where n stands for an
SLC dimension and q for a number of prime number mod-
ules that we need for a solution, where we multiply a vector
by a scalar variable and then reduce the computed vector by
mod m. Undoubtedly, this task presents a bottleneck in the
code, and therefore a system optimization should be used
to obtain a performance improvement in this code.

The two main approaches that we have taken are in in-
tegral arithmetic and in floating point arithmetic. The in-
teger arithmetic is a natural choice for reduction purposes
as a single div instruction calculates both quotient and re-
mainder and we can just pick the remainder. The alterna-
tive strategy is to employ the floating point arithmetic. Al-
though, at the first sight, the floating point arithmetic does
not look very attractive for the reduction purposes, the pa-
per shows, that the possibility to use SIMD vector exten-
sions to calculate multiple reductions with the same mod-
ule at once is very enticing and several times faster than the
original approach using the integer arithmetic.

Section 3.6 deals with the Gaussian elimination and ap-
plication of the presented approaches for it. In addition the
section presents the optimizations for other operations, not
only the multiplication with reduction.

The approaches presented in sections 3.1 through 3.3
can be found in papers [10, 11].

3.1. Integer Approach

This approach is the traditional one. A product of in-
tegers a and b is calculated and a truncated quotient and
remainder are obtained by using the div instruction. The
quotient is simply discarded and the remainder is stored in-
stead. When presented in an assembly language, this ap-
proach corresponds to the following code fragment:

mov eax, dword ptr [a] ; load a into eax
mov edx, dword ptr [b] ; load b into edx
mul ; calculate a*b in eax
mov edx, dword ptr [m] ; load modulus into edx
div ; eax=TRUNC(a*b/m), edx=remainder
mov dword ptr [z], edx ; store remainder

3.2. Floating Point Approach with fmod/remainder
Functions

This is the first and the simplest approach that uses the
floating point unit (FPU) instead of the integer unit. The
approach loads 3 integers (a, b, and m) onto the floating
point stack and uses the fprem or fprem1 instruction after-
wards depending on if we wish to obtain a result in Zm or
in Sm. The following code corresponds to the implemen-
tation of the fmod function with the fprem instruction or
remainder function with the fprem1 instruction:

fild dword ptr [m] ; modulus
fild dword ptr [a] ; a modulus
fild dword ptr [b] ; b a modulus
fmulp ; a*b modulus
fprem/fprem1 ; calculate remainder
fistp dword ptr [z] ; store remainder as integer

3.3. Optimized Floating Point Approach

A problem of the approach described in section 3.2 is
that fprem and fprem1 instructions have high latency1.
These latencies are also caused by checks for validity of
source operands, a need for division and also because of
the fact that the floating point divisions are not pipelined.
As we know that input operands are always valid and there
is not likely that a floating exception is to be ever thrown,
we can go around both fprem/fprem1 and div instruc-
tions. We can use 1/m value which we can precalculate in
advance of the computation and replace division with mul-
tiplication. When we do so, we obtain the following code:

;--------------------------------------------------------------------
; Load the floating point stack and calculate a*b/modulus
;--------------------------------------------------------------------

fild dword ptr [a] ; a
fimul dword ptr [b] ; a*b
fld st0 ; a*b a*b
fmul qword ptr [m_inv] ; a*b/modulus a*b

;--------------------------------------------------------------------
; Enforce rounding to integer by adding a rounding constant. Once
; rounded, remove the constant by subtracting it.
;--------------------------------------------------------------------

fadd qword ptr [mmd_round]
fsub qword ptr [mmd_round]

;--------------------------------------------------------------------
; Calculate the remainder
;--------------------------------------------------------------------

fimul dword ptr [m] ; modulus*ROUND(a*b/modulus)
fsubp st1, st0 ; remainder
fistp dword ptr [mmd_tmp] ; store remainder as integer...

;--------------------------------------------------------------------
; Add modulus if the remainder is < 0 or add zero otherwise.
;--------------------------------------------------------------------

mov eax, [mmd_tmp] ; ...and load it into eax
mov edx, eax ; make a copy of eax into edx
sar eax, 31 ; if eax < 0 then eax = -1 else 0
and eax, dword ptr [mmd_intp] ; and module’s value
add eax, edx ; add zero, or module

1According to [3], latencies of fprem and fprem1 are 16 – 56 cycles depending on lengths of dividend and divisor.
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3.4. Floating Point Approach with MMX and SSE2

Actually, there is a necessity for multiple reductions
modulo m as we solve SLCs and there we typically mul-
tiply a vector (matrix column) with a scalar during Gaus-
sian elimination. In the following a is a scalar, while b is
a columnar vector and we rather calculate z = ab mod m.
The size of operands in this approach is restricted and in-
termediate products shall not exceed 53-bit mantissa, there-
fore a, m, and elements of b must only be up to 26-bit wide.
Because of an excessive source code length, only the most
important portion of the unrolled modular multiplication
with reduction is shown:

;-------------------------------------
; Save the FPU state
;-------------------------------------
fsave [sse_fpu_state]

;-------------------------------------
; Load parameters into registers
;-------------------------------------
mov ecx, [ebp+16]
mov edi, [ebp+12]
mov esi, [ebp+8]
mov ebx, [mmd_intp]

;-------------------------------------
; Is vector of even or odd length?
;-------------------------------------
mov eax, ecx
shr ecx, 1
and eax, 1
mov [ebp-4], ecx
mov [ebp-8], eax
or ecx, ecx
jnz .loop_2x_sse
jmp .pre_loop_1x_sse

align 32
.loop_2x_sse:

;-------------------------------------
; Process next 2 vector elements
;-------------------------------------
cvtpi2pd xmm0, [esi]
mulpd xmm0, [sse_dbl_m]
movapd xmm1, xmm0
movapd xmm2, [sse_dbl_p]

mulpd xmm0, [sse_dbl_pinv]

addpd xmm0, [sse_round]
subpd xmm0, [sse_round]

mulpd xmm0, xmm2

subpd xmm1, xmm0

cvtpd2pi mm0, xmm1

movq mm1, mm0
psrad mm0, 31
pand mm0, [sse_int_p]
paddd mm0, mm1

movq [edi], mm0

;-------------------------------------
; Move to next 2 vector elements
;-------------------------------------
add esi, 8
add edi, 8
dec dword [ebp-4]
jz .pre_loop_1x_sse
jmp .loop_2x_sse

.pre_loop_1x_sse:

;-------------------------------------
; Process 1 vector element
;-------------------------------------
mov ecx, [ebp-8]
jecxz .loop_1x_sse_end

.loop_1x_sse:

mov eax, [esi]
mul dword [sse_int_m]
div dword [sse_int_p]
mov [edi], edx

;-------------------------------------
; Move to the next vector element
;-------------------------------------
add esi, 4
add edi, 4
dec dword [ebp-8]
jnz .loop_1x_sse

.loop_1x_sse_end:

;-------------------------------------
; Restore the FPU state
;-------------------------------------
frstor [sse_fpu_state]

Approach presented in this section can be found in [12].

3.5. Floating Point Approach with SSE2 by Intel In-
trinsics

Since most of the operating systems currently runs in
the 64-bit mode, there is a need of porting the presented
algorithms to the 64-bit architecture. These ports became
slightly difficult because of minor differences in the assem-
bly languages of IA-32 and the x86-64 architecture, and
therefore we have decided to implement the latest approach
from section 3.4 by means of the Intel intrinsics functions
instead. This implementation no longer requires assembly
code inlines nor the assembler compiler.

Due to the performed loop unrolling we were able to
eliminate the usage of the MMX technology instructions
and we have unrolled the loop to process eight elements per
each iteration. Thus the sequence of instructions psrad,
pand, and paddd at the end of two elements processing has
been superseded by their SSE2 equivalents.

This implementation can be compiled using the GNU C
compiler and possibly the Intel C compiler2. Both compil-
ers support the Intel intrinsics functions to perform the SSE
technology instructions directly from the C source code,
and such implementation is portable through IA-32 and
x86-64 architectures without any problems.

3.6. Using SSE2 for Gaussian elimination

All of the optimization performed through sections 3.1
to 3.5 has been made to fully optimize the process of the
Gaussian elimination in residual arithmetic. Note that the
multiplication with reduction is not the only possible oper-
ation to be vectorized using SIMD instructions since almost
all of the processing during the elimination is vector based.

Consequently, we have used SSE instructions also for
the addition of the row multiple to another row(s) in the
matrix. This operation can be written as z = a−cb mod m,
where a and b are columns of the SLC matrix and c is
a nonzero scalar. The source code for multiplication just
needs to be extended with a load instruction and a subtrac-
tion of the elements of the second vector, and a reduction
mod m is performed after this operation.

We have also used vector processing during the back-
ward substitution in the Gaussian elimination process,
where SSE extensions are used to calculate a dot product
mod m of a ·y mod m, where a stands for a row of the SLC
matrix, and y stands for the right hand side vector.

We have used the approach from section 3.5 and Intel
intrinsics functions for this implementation.

2We have no Intel C compiler at disposal.
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4. RESULTS

We have implemented all of the previous approaches in
their vector form, and applied them on a problem of solving
a SLC on 1.7 GHz Linux Intel machine. All timings were
obtained with the clockAPI. The following table shows re-
sults obtained for multiplication with reduction ab mod m
used during solving SLCs of various vector dimensions n
for C language and then for all 5 approaches we have pre-
sented:

Table 1 Vector multiplication with reduction timings

n “C” [s] App. 3.1 [s] App. 3.2 [s] App. 3.3 [s] App. 3.4 [s] App. 3.5 [s]

104 0.000330 0.000215 0.000145 0.000098 0.000073 0.00001

105 0.003648 0.002306 0.001484 0.001109 0.000755 0.00010

106 0.037292 0.022908 0.016579 0.011686 0.009848 0.01003

107 0.355189 0.232233 0.162232 0.112162 0.083057 0.10602

108 3.464424 2.306178 1.580290 1.056258 0.821638 1.05307

For results from Tab. 1 drawn into a graph, a significant
speed up is visible:
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Fig. 1 Vector multiplication with reduction timings

Fig. 1 plots all 5 approaches we have taken including the
plain C implementation (the “C” column) which just uses
( a * b ) % m followed by 5 approaches described in
sections 3.1 through 3.5. It is important to note that timings
have been measured for unrolled versions of presented al-
gorithms that calculate vector multiplication with reduction
and instructions have been blended with respect to proces-
sor architecture. Each approach was optimized separately
at instruction level in order to obtain top performance.

There is an interesting observation that we can safely
use the inverse module 1/m instead of just m and avoid the
division at all. Moreover, the FPU unit is not used in the fi-
nal approach. The reduction is performed by 2 elements at
once with SSE2 instructions with a support of MMX3. The
speed-up which we obtained in approach 3.4, when com-
pared to approach 3.1, tops 4.2 times.

We can observe that the approach from section 3.5 gives
worse results than approach from section 3.4, but this slow-
down is a cost for higher simplicity and portability.

Finally, we have measured a timing for approach 3.6
and compared it to the Gaussian elimination implemented
using pure C. Both timings are presented in Tab. 2 for vari-
ous SLCs dimensions n.

Table 2 Gaussian elimination timings

n “C” [s] App. 3.6 [s]

1000 13.478000 4.592222
1500 45.243000 15.435556
2000 107.179000 36.250000
2500 209.139000 70.493750
3000 361.433000 121.618889
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Fig. 2 The time complexity of results from Tab. 2

5. DISCUSSION/CONCLUSIONS

This paper deals with a system optimization of the core
problem in solving of a set of linear congruencies, that is
a modular reduction after multiplication of two numbers.
The reduction is necessary to avoid overflow. This problem
appears eg. in Gaussian elimination which is commonly
used during the solving process. Normally, the reduction is
performed in an integer unit with the div instruction, but
hence this instruction has high latency and is not pipelined,
we would prefer a way without the division.

Another approach would be to perform the modular re-
duction after multiplication completely in the floating point
unit with fmod and remainder C POSIX functions that
correspond to fprem or fprem1 instructions of the Intel
architecture set and that calculate the remainder mod m
which we need. These two instructions have also high la-
tencies, and, because we know the module m in advance,
we can go around using fprem and fprem1 instructions
by turning division by a module into multiplication by its
inverse 1/m. Inverse modules are typically precalculated
once during an initialization process of a program.

Nevertheless, the process of Gaussian elimination fea-
tures a multiplication of an entire matrix row b with the

3The MMX dependency has been removed in approach 3.5.
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same constant a and therefore a need for modular reduc-
tion after multiplication with the same module m arises
(z = ab mod m). This need can be beneficial as we can
perform multiple reductions at once with the help of proces-
sor features — namely SIMD instructions from the SSE2
processor extension. Taking this approach allows to com-
pute two reductions at once and when several reductions
are combined together and the code loops are unrolled, a
significant speedup is achieved. This speedup is shown in
Fig. 1 and presents more than a four times enhancement4.

For a SLC solution using the Gaussian elimination with
modular pivotization, we have achieved a speedup rate up to
3 times due to a use of SIMD vector extension instructions
for multiplication, addition, and all other possible vector
processing during the elimination process.
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versita, Plzeň, 2007, 47–52, ISBN 978-80-7043-605-9

[11] Vondra, L.: Efficient algorithms for modular multipli-
cation, Proceedings of POSTER 2007, Faculty of Elec-
trical Engineering, The Czech Technical University in
Prague, 2007.
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