
50 Acta Electrotechnica et Informatica, Vol. 8, No. 4, 2008, 50–59

SOFTWARE BASED CPU EMULATION

Slavomı́r ŠIMOŇÁK∗, Peter JAKUBČO∗∗
∗Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, E-mail: Slavomir.Simonak@tuke.sk
∗∗Student of Computer Engineering and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of

Košice, Letná 9, 042 00 Košice, E-mail: pjakubco@gmail.com

ABSTRACT
Software based emulation of a real hardware is an imitation of its internal design by the software application (model), which

behavior is similar to the behavior of the hardware (keeps functionality). Emulators are used with advantage in development (where
expensive or old hardware is partially or completely supplied by an emulator), testing and also as a support for machine non-compatible
software. Considering a concept of Von-Neumann computer, the central processing unit (CPU) emulation is a core of the computer
emulator. Within this paper, theoretical aspects of a CPU emulation are treated and a concrete software solution is also presented.

Keywords: emulation, CPU, interpretation, static binary translation, dynamic binary translation

1. INTRODUCTION

It can be supposed that the first emulator was created
when an old computer was replaced by a new one, non-
compatible with the original. It was necessary to transfer
most of programs from previous computer to a new one.
It can be done in several ways: (a) re-compiling of source
codes on a target machine - however it’s not always sim-
ple and possible task (because of hardware differences);
(b)rewriting programs to a new machine; (c)translation of
binary code for old machine into binary code for new ma-
chine including translation of system calls; and (d)building
an emulator for the old machine.

Further we use the term ”source computer” that stands
for an original, old (emulated) computer and a term ”target
computer” for a real computer we use for emulation.

In general it is a difference between simulation and em-
ulation. A simulator simulates behavior of a system in very
accurate way in every aspect. For example a Turing ma-
chine can be simulated by another one without any mem-
ory, instruction or performance loss. An emulator is less
accurate simulator [1], emulator accuracy is discussed in
section 6.

Now we sketch a way, in which the simulator (and as
a consequence also an emulator) of some machine can be
constructed. We will start with well known Turing ma-
chines [3–5], and show a connection of Universal Turing
machine with Von-Neumann architecture.

2. THE TURING MACHINE

Turing machine (TM) is an abstract computing machine
- abstract automaton, as depicted in Fig. 1.

The control unit M represents a state mechanism (or a
register), which in every time holds a state q. Using actual
instruction and an information read by read/write head h,
M can change its state to a new state p.

The tape t is boundless (from the left and right), linear
sequence of cells, where in every time only a finite number
of them is non-empty. Empty symbol in Fig. 1 is marked
by symbol B. Every non-empty symbol belongs in a set of
an input alphabet Σ of TM.

The head h is a mechanism that can ”see” content of ac-

tual cell (above which is situated) and can perform in one
time only one from three admissible actions (in considera-
tion of actual cell):

• read symbol

• rewrite symbol

• move head left, or right

.B B B Bs au v input tape t

q

M

control unit

6� -
read/write head h

Fig. 1 Turing machine

According to [3]:

Definition 2.1. In a formal way, TM is ordered 5-tuple
M = (K,Σ,Γ,δ ,q0), where
- K is the finite set of states
- Σ is the finite set of symbols of input tape, so-called input
alphabet
- Γ is the finite set of all symbols of TM’s tape, i.e. Σ ⊆ Γ

- δ : K × (Σ∪Γ) → 2K×(Γ∪D) is TM’s transition function,
and D ∈ {R,L,N}
- q0 ∈ K is the initial state of TM M.

There exists both non-deterministic and deterministic
Turing machines, we will further consider only determin-
istic ones.

An instruction of deterministic TM is represented by
a value of its transition function: δ (qi,s j) = (qk,sl ∪D),
where {qi,qk} ∈ K; {s j,sl} ∈ Γ; and D ∈ {R,L,N}. It is
possible to express the instruction in following form:

pn : qi s j sl D qk (1)

A set of all TM’s instructions is called a program of TM.
Situation in TM is clearly characterized by a configu-

ration of TM. According to [4] is a configuration of TM

ISSN 1335-8243 c© 2008 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 8, No. 4, 2008 51

ordered 3-tuple c = (q,x, i), where q represents actual state
of control unit M, x represents content of input tape t and i
is sequential number of tape’s actual cell position counted
from the first non-empty symbol of the tape t, from left to
right (started from 1).

Let’s suppose, that we have two configurations c1 =
(q1,x, i) and c2 = (q2,y, j), {q1,q2} ∈ K, {x,y} ∈ (Σ∪Γ)+.
We say, that TM M has a step of computation from con-
figuration c1 to c2 applying the instruction pn (marking:
c1 `pn c2), if the following condition is true:

1. pn : ∃(q2,s2 R) ∈ δ (q1,s1) ⇒ x = us1v, |u| = i− 1,
y = us2v, j = i+1, {s1,s2} ∈ Γ

2. or pn : ∃(q2,s2 L) ∈ δ (q1,s1)⇒ x = us1v, |u|= i−1,
y = us2v, j = i−1, {s1,s2} ∈ Γ

3. or pn : ∃(q2,s2 N)∈ δ (q1,s1)⇒ x = us1v, |u|= i−1,
y = us2v, j = i, {s1,s2} ∈ Γ

More about Turing machines in general can be found in [5].

2.1. Universal Turing Machine

In work [5] by Alan M. Turing is shown, that it is pos-
sible to invent a single machine that can be used for simu-
lation of another computing machine. Turing marked this
machine as U and it’s called Universal Turing machine
(Fig. 2).

Machine U can compute any computable sequence.
This sequence is represented by input tape tU . Let’s have
another computing machine M. If input tape tU is composed
of encoded machine M with its input and output tape, ma-
chine U will compute the same sequence as machine M, i.e.
machine M will be simulated on the machine U .

.encoded M input tape tM output MB B B B

q

U

6� -

Fig. 2 Universal Turing machine

Outline construction of the U machine
Turing constructed his U machine as an example. However,
his way of U’s construction is not the only one. Some oth-
ers tried to minimize the machine (C. Shannon, M. Minsky,
S. Wolfram, . . .). Here TM U will be described according
to [5].

Let’s have TM M = (K,Σ,Γ,δ ,q0), where K ∈
{q0,q1, ...,qn}, Σ ∈ {0,1,2, . . .} is linearly ordered, Γ ∈
({B}∪Σ), δ is a transition function and q0 is initial state
of machine M in the sense of definition 2.1.

If we want to construct the machine U =
(KU ,ΣU ,ΓU ,δU ,q0U), we have to specify the input for the
machine (i.e. encoded machine M) and all the rest of U’s
sets - states (with initial state), alphabets (input/output) and
finally a transition function.

First we’ll encode the M machine. For encoding pur-
poses Turing used only a form (1) to express the in-
struction. Every instruction and configuration of ma-
chine M can be encoded using only seven symbols ΣU =
{A,C,D,R,L,N, ;}. Next:

1. ∀qi ∈ K will be encoded by string DAi ∈ Σ
+
U , where

Ai = AA · · ·A︸ ︷︷ ︸
i

2. ∀s j ∈ Σ will be encoded by string DC j+1 ∈ Σ
+
U , where

C j+1 = CC · · ·C︸ ︷︷ ︸
j+1

3. Empty symbol B ∈ Γ will be encoded by symbol
D ∈ ΣU

4. Symbols {R,L,N} ∈ ΣU represents movement of a
head: to the right (R), to the left (L) and without
movement (N). So they have the same meaning like
in machine M.

Input tape tU contains two successive strings: (a) a
string describing a table of M’s instructions; (b) a string
describing input tape tM .

Work of U is based (besides its instructions) on its input
tape tU just like work of M is based on its input tape tM.

Encoded machine M is assembled into input tape tU in
following format: it begins with two symbols e one after
other, then follows the code started with symbol ;, and in-
structions are separated by ;. Code is also separated out on
single empty symbol B. The string of encoded code is then
ended by double-colon symbol ::.

Suppose machine M contains two instructions:
q1S0S1Rq2; q2S0S0Rq3. These will be encoded as follows:
ee;BDBABDBDBCBRBDBABAB;BDBABABDBDBRBDBABABAB::

The transition function of machine U is responsible for
decoding of symbols on input tape. Places like actual state,
instruction, input and action have to be marked. For this
purpose machine U uses advisory symbols u, v, x, y, and
z. In stages of U’s work are these symbols stored on empty
spaces (marked with B) of its tape tU on the right side from
”marked” place.

For example actual instruction is marked by symbol z
on the right side of ;, x marks actual U’s state:

ee;zDBAxDBDBCBRBDBABAB;BDBABABDBDBRBDBABABAB::

Detailed description of this machine is presented in
mentioned work [5].

Thereby is shown that it is possible to simulate one TM
by another (Machine U is also TM and has the same facil-
ities). Now it will be enough to show that all real comput-
ers represent some subset of Turing machines and therefore
also real computers can be emulated (but not always simu-
lated) by another real computer.

3. COMPARISON WITH REAL MACHINES

Turing machines represents a foretoken of computer era
that we know today. Conception of single memory (for in-

ISSN 1335-8243 c© 2008 FEI TUKE

52 Software Based CPU Emulation

structions and data) and isolated control unit for executing
instructions was an inspiration for well-known mathemati-
cian John Von-Neumann, who’s computer architecture is
used till present time.

Turing machines are the most powerful computers in-
deed and they’re able to cope with any algorithmically com-
putable problem. However a real construction of the ma-
chine isn’t possible. The reason is its infinite tape.

Nevertheless almost all present computers are turing-
complete and therefore everything what can real computer
compute, also TM can compute [6].

Every real machine represents in fact a deterministic fi-
nite automaton, because it can have only finite number of
configurations, exactly as TM.

The difference is only in TM’s ability to manipulate
with unbounded amount of data, even though TM in final
time (as well as real machines) can manipulate only with
finite amount of data.

Like TM, even real machines can have such big storage
space as they need e.g. by adding more disks or other de-
vices (of course not to infinity). But the fact is that for lot
of useful computations neither TM, nor real machines don’t
need extremely huge storage space.

4. VON NEUMANN ARCHITECTURE

Von-Neumann architecture is a model of computer de-
sign, which was first used in EDVAC computer. This model
uses single CPU (Central Processing Unit), single sepa-
rated memory for storing both instructions and data, and
input/output devices. Its slightly modified version is shown
in Fig 3.

CPU Memory

I/O

� -

6

?
�

6

Fig. 3 Von-Neumann architecture

According to [2], Von-Neumann was inspired by the
Universal Turing machine and his work was based on Tur-
ing’s work. The Neumann’s conception is also known as
Stored-Program-Computer. Every Von-Neumann’s com-
puter implements Universal TM and in fact correspond to
Flynn’s architecture SISD1 [7] (Fig. 4).

Processor

Memory

-

�

6D
a
t
a

D
a
t
a

I
n
s
t
r

Fig. 4 Flynn’s SISD architecture

An emulator has to reflect architecture of emulated com-
puter. Further we will use the Von-Neumann architecture.
The core of the architecture is mentioned CPU - Central
Processing Unit. This becomes the core of the emulator,
too.

5. THE BASIC STRUCTURE OF AN EMULATOR

We can look onto a work of real computer as on some
kind of repeated activity. The CPU execute instructions in
infinite loop [7], therefore main part of emulator’s work is
a cycle (loop).

In real computers the rest of hardware communicate
with CPU, and work of the hardware is often parallel with
CPU’s work. In most cases an emulator (with emulated
CPU and hardware) is executed as one single process (or
thread) that is running on single computer and therefore
true parallel work of hardware with CPU is not possible,
however their common work is necessary. Parallel work of
the hardware can be partially solved using multithreading
(and synchronization) or distributive approach.

Parallel work of CPU and hardware in linear (non-
parallel) environment is solved using some kind of planner
or scheduler. The emulator assigns a time in slices to all de-
vices and also to CPU sequentially. A device with assigned
time slice is working, while others aren’t. Basic algorithm
using simple scheduler is shown in Fig. 5.

Fig. 5 Basic algorithm of emulator’s work

A type of the scheduler in algorithm shown is simi-
lar to preemptive round-robin. Every device is (in always
the same sequence) assigned a fixed-time slice (or slot), in
which the device work. If the slice is elapsed then a new
time slice is assigned to the next device.

A CPU can support processing of interrupts (internal,
external). If it does so, and are satisfied certain conditions,
it is necessary to generate them.

1Single Instruction Single Data stream

ISSN 1335-8243 c© 2008 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 8, No. 4, 2008 53

Time synchronization perform a speed balance of run-
ning emulation in a way that the speed should be as close
as possible to the speed of source machine.

6. ACCURACY

If we are using the term ”emulator”, it has an effect to
speak about accuracy, because an emulator skips some spe-
cific details of emulated hardware. A skip/replacement of
the details of the hardware by some abstraction often leads
to increase of emulator’s performance.

Following this knowledge the emulator’s accuracy is a
range in what is the behavior of the emulator similar to the
behavior of the real hardware. There exists several levels of
accuracy, the most important are: (a)accuracy of internal
representation of data and states and (b)time accuracy of
instruction cycle (timing).

An effort of achieving an accuracy in some level can
imply a decrease of accuracy in other level. For that rea-
son the designer of an emulator should know what level of
accuracy requires the nature of the emulator.

6.1. Internal representation

Internal representation of data, data paths, states and
internal communication is not visible from the outside.
Therefore an effort of achieving an accuracy in this level
is not frequent.

It can be required by the hardware designers that are
testing new architectures, or can be used in hardware emu-
lation with atypical need of synchronization.

6.2. Instruction cycle timing

Timing of instruction cycle is an ability of the emulator
to perform some instruction (or some number of instruc-
tions) in relative same time as if the instruction would be
performed on a source machine.

In fact this is the most emphasized level of accuracy, be-
cause software running in emulator is often synchronized
with the speed of source computer (real-time applications,
games).

7. EMULATION TECHNIQUES

Now we know, that executing a code on emulator or on
a real machine gives the same results. But techniques used
by emulator for code execution can vary.

There exists two main emulation techniques: (a)code
interpretation and (b)binary translation. They can be com-
bined together in order to achieve the most powerful emu-
lation.

7.1. Code interpretation

It is the simplest technique, which ”clean form” is in
favor used for emulation of older2 8 and 16 bit computers
(not very complex and fast).

Processor executes program’s instructions in a se-
quence. This cause a change of CPU’s internal states and
interaction with processor’s environment (interrupts, com-
munication with peripheral devices, etc.)

Instructions are sequentially executed in instruction cy-
cles. Instruction cycle is a sequence of elementary steps,
during which the processor executes an operation defined
by the instruction. This cycle is divided into two phases [7]:
(a)phase of instruction fetch and (b)phase of instruction ex-
ecution. These phases can overlap3, as it is shown in Fig. 6.

instr. i

M1 M2
T1 T2 T3 T4 T1 T2

� fetch -�execute-

instr. i+1

M1 M2
T1 T2 T3 T4 T1 T2

� fetch -�execute-

Fig. 6 Instruction overlapping in Zilog Z80 processor

Code interpretation technique allows the emulator to
imitate the CPU. Phase overlapping isn’t usually imple-
mented, with exception for flow processing of instructions
(or VLIW architectures [7]), and can be done only by use of
interpretation technique. In this case, phases of instruction
cycle are separated (let’s suppose an existence of phases
Fetch, Decode, Execute and Store). These are processed in
correct sequence for instruction and in every time only one
phase is processed.

If phases are overlapped, the easiest way of implemen-
tation is sequential (or linear) execution of all ”parallel”
phases (i.e. that should be executed in time ti), and in time
ti+1 continue executing next sequence of ”parallel” phases
(Fig. 7).

According to Fig. 7 an emulator will execute all phases
in order: F1-D1-F2-E1-D2-F3-S1-E2-D3-F4-S2-E3-D4-
S3-E4-S4.

Fig. 7 Example of scalar execution of four instructions

The main algorithm of CPU’s work (block executeCPU
from the algorithm in Fig. 5) is a loop, where some number
of instructions is interpreted (decoded and executed). In-
put for the loop is number of machine cycles, which should
be executed (cte) and output is number of machine cy-
cles, which were truly executed (usually few machine cy-
cles more as was needed) (ec).

ec = 0;
while (ec < cte) {

2fourth generation, years 1975 till 1990
3e.g. processor Zilog Z80, Intel 8080 and others

ISSN 1335-8243 c© 2008 FEI TUKE

54 Software Based CPU Emulation

opcode = fetch_from_memory(PC);
PC = PC + 1;
tmp = decode_and_execute(opcode);
ec = ec + tmp;

}

Fig. 8 CPU’s interpretation algorithm

For sake of simplicity we can suppose that all instruc-
tions are only one byte long and therefore program counter
(PC) increment is correct.

Advantages of the technique are: simple debugging of
an emulator, portability, easy instruction cycle timing, the
ability of fit the implementation of instructions realization
for target CPU.

The main disadvantage is low performance of the emu-
lation (for emulation of mentioned older computers isn’t so
noticeable, but it will be for emulation of faster and more
complex computers), because besides from pure execution
time also interpretation management has to be taken into
account.

The speed of interpretation can be increased using some
similarities between source and target CPU (e.g. flags gen-
eration, or some instructions - for example it is possible to
translate all instructions of processors i8080, i8085 and Z80
into instructions of x86 processors), or using special tech-
nique called threaded code. In the technique a program is
decoded (in static or dynamic way) resulting into so-called
decode table. Its i-th item represents an absolute address i
in memory and item value is an address of function (imple-
mented in emulator) used for instruction execution on ad-
dress i. Then in sequence for next PC (first for initial value
of PC) are called functions from the decode table. More
about the technique you can find in [1].

7.2. Binary translation

This technique isn’t very similar to the work of a real
CPU. Its aim is to increase emulator’s performance, not
by creating ”virtual CPU” which interprets a code, but this
code (in binary form) is translated statically (once before
first run) or dynamically (in run-time) into code for target
machine. Resulting code is then executed on a target ma-
chine. As it was mentioned, according to the time when the
code is translated, we distinguish (a)static and (b)dynamic
binary translation. Even if the term ”binary translator” can
be understood as some kind of compiler, it is a common
term for application that performs both translation and exe-
cution of the code.

Work of the binary translator can be divided into two
phases: (a)translation, wherein code for source CPU is
translated into code for target CPU (b)execution, wherein
CPU executes translated code. Both phases are very differ-
ent and should be studied independently.

Translation phase is much about similar to a compiler.
Input to a binary translator is however binary (machine)
code, therefore it is possible to omit some phases of compi-
lation (lexical, syntactic and semantic analysis) and replace
them by just one decode phase.

7.21. Static binary translation

This is not a real technique for CPU emulation. Static
binary translator is rather some interface or set of tools, by
which is a code for one architecture translated into a code
for another architecture. Result is usually an executable file,
which can be run on target machine without any other spe-
cial tools.

However sometimes it is not possible to do this kind of
translation. An example is self-modifying code, where it is
hard to say, how this code will look in run-time.

This technique is used rarely (as an opposite to dynamic
binary translation). More about static binary translation you
can read in [11].

7.22. Dynamic binary translation

It is some alternative to static binary translation and
its use can be seen mainly in JIT (Just In Time) technol-
ogy [12], which is the core of .NET technologies, or most
of JVM (Java Virtual Machine) implementations.

Fig. 9 Dynamic binary translation with interpreter

Basic algorithm of work of dynamic translator is sim-
ilar to interpretation using threaded code technique (sec-
tion 7.1). The algorithm consists of two phases, the first
performs translation of code part, second executes the trans-
lated code. It can work in two ways: either using interpre-
tation, too, or not. Sample algorithm which uses interpreta-
tion is shown in Fig. 9.

Given algorithm is using additional cache memory
(translatedCache), where all the translated blocks of

ISSN 1335-8243 c© 2008 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 8, No. 4, 2008 55

code are stored. Mostly it is implemented as a hash table,
because it needs very fast access.

Table blockInfoTable identifies particular (not trans-
lated) blocks of code, which besides from an ad-
dress, code size and profiler informations contains also
an information about number of the block’s interpreted
executions. If the number exceeds maximal value
(MAXEXECUTIONS), the block is then translated into cache
table translatedCache. That’s how an emulation
is speeded-up, because if a code is executed rarely,
then isn’t worthwhile to do expensive translation (value
MAXEXECUTIONS is determined in empiric way and there-
fore represents an input parameter for this algorithm).

More about dynamic binary translation can be found
in [1, 13].

8. HIGH LEVEL EMULATION

This technique is used for a performance increase of
hardware emulation. First time it was used in emulator Nin-
tendo64 UltraHLE [8].

In run-time the emulator is searching for emulation code
of source hardware. If it succeeds, the code is converted
into code for target hardware and this code is then used.
UltraHLE works in a way that before execution of the emu-
lation it searches entry points of functions (in emulated op-
erating memory) that access to graphic and/or sound card.
On found places the emulator puts a ”marker”.

Then in run-time if marked functions are going to be
called, the emulator takes their arguments and use them
for implementation of native functions and objects of tar-
get hardware, which will have the same or similar behav-
ior4. This results to a performance increase of the emula-
tion, because the hardware emulation is provided directly
on a target hardware.

More about HLE can be found in [8, 9].

9. EMU STUDIO — MICROCOMPUTER EMULA-
TION PLATFORM

Now we present one concrete solution, which is devel-
oped by the second author of this paper as Semestral project
since 2006. Project is being solved till today, as his diploma
work. Main motivation in development was/is to present an
architecture of older (8-bit) computers to students in more
practical way.

Initially it was simple emulator (with powerful assem-
bler compiler) of 8-bit Intel 8080 processor, now it became
emulation platform for microcomputers, not necessarily 8-
bit, where user using advisory addons (plugins) can create
arbitrary configuration of any microcomputer (and eventu-
ally even some abstract machine). In the present time there
exist besides of Intel 8080 also Zilog Z80 processor, which
is its 8-bit successor, and several devices are implemented:
terminal (display and keyboard), floppy disk drive, serial
card.

Seeing that purpose of the project didn’t change (it is
aimed to students and laics), it was made by keeping very

high transparency, configurability and simplicity. User-
student trying to learn something about given platform, has
to have briefing about important actions in run-time emu-
lation, therefore an interaction precede speed and perfor-
mance of the emulator5.

In order to student wouldn’t be limited by a target plat-
form, we decided to implement the emulator in Java lan-
guage (what, from performance point of view, is not opti-
mal decision). As we determined later, present performance
in CPU emulation is sufficient. Emulator was tested on sev-
eral target machines. We was emulating Intel 8080 CPU
(which had original frequency 2 MHz). A target machine
with Intel Core2 Duo processor, frequency of both cores
1,66 GHz and 1GB RAM can run in range of 50-80 MHz.
Using another target machine with Intel Pentium 4 proces-
sor, 2.4 GHz, with 248 MB RAM by using the same CPU
and program can run in range 30-40 MHz. So performance
depends mainly on target processor speed (and/or number
of cores) and target RAM size.

9.1. Plugins

It is an advantage if an emulator can adapt itself for
software requirements on hardware. This can be done by
changing configuration of emulated computer. Older com-
puters (e.g. Altair8800) didn’t have so much peripherals, so
there couldn’t arise any conflict by using all of them.

In that we didn’t want to remain with emulation of only
one computer what implies a need to support of configura-
bility of an architecture. Thus we splitted the emulator into
main module and plugins, which can be dynamically al-
tered. That’s a way in which different configurations can be
created.

The emulator supports four categories of plug-
ins: (a)compilers, (b)CPUs, and their disasemblers,
(c)operating memories and (d)peripheral devices.

Every category has assigned its own directory. Accordly
an emulator can distinguish between plugin types.

Fig. 10 Cooperation of main module with plugins

Cooperation of plugins with main module is shown in
Fig. 10. As can be seen, the schema is similar to Von-
Neumann’s architecture (Fig. 3).

4In UltraHLE case is 3D API of N64 console translated into 3DFX Glide API (subset of OpenGL 3D API)
5For this reason is CPU emulated using interpretation, which allows to examine every executed instruction in detail

ISSN 1335-8243 c© 2008 FEI TUKE

56 Software Based CPU Emulation

The configuration of an architecture is therefore made
up of plugins selection. Except the peripheral devices
(whose number can be arbitrary - according to the CPU
support), the configuration has to consist of exactly one
plugin from every category. Formally a configuration is
ordered 4-tuple C = (CPU,Compiler,Memory,DeviceSet),
where DeviceSet ⊆{Device1,Device2, ...,Devicen} and n is
the number of all devices.

9.2. Main module

This module is a main element of an emulator. It can be
executed independently. It manages and selects a configu-
ration of source machine’s architecture (immediately after
start of the application) and then loads all needed plugins
(in the sense of selected configuration). These plugins are
initialized with default values (storing/retrieving a configu-
ration of the plugins isn’t implemented yet). Main task of
the module is to integrate all elements of the system in a
way that they would behave like a whole. It also performs
basic interaction with the user.

Main window (Fig. 11) is divided into two switchable
panels:

Panel of source code gives to user all resources for
program creation phase - text editor and interaction with
compiler. Text editor supports syntax highlighting with line
numbering, what helps to find potential bugs in code. Mes-
sages from compiler are written in bottom part of the win-
dow. Text editor support functions like undo, redo and of
course it can work with clipboard.

Panel of emulator is divided into three parts - debugger
(or debugging window), status window and the window of
peripheral devices. Debugging window shows a list of in-
structions located in operating memory with address close
to program counter (PC) value. A row with actual instruc-
tion (to which PC points to) is highlighted. In the window
the user can control (or manage) a progress of emulation
with several functions - reset, run, step, stop, break, and
also the ability of explicit setting of PC value (do a ”jump”).
CPU can support breakpoints (present implementation of
mentioned Intel 8080 does). A breakpoint is used to mark
some arbitrary memory address.

Fig. 11 Main window

If (in run-time) the PC will be equal to address which
is marked as breakpoint, the emulation is paused. The user
can then decide what to do - to continue, step, or stop the
emulation.

Status window shows actual state of CPU used and its
content is all implemented in the CPU plugin and therefore
it is different for every kind of CPU. Usually it displays
CPU registers’ values, flags and other useful information.

Window of peripheral devices contains a list of all
loaded (and usable) devices. By selection of a device it

is possible to run its graphical interface (if the device has
some).

10. PLUGIN DESCRIPTION

Now we describe plugins for currently implemented ar-
chitecture of computer MITS Altair 8800 [14], which used
Intel 8080 processor, and maximal size of its operating
memory was 64kB. It could have these peripheral devices:
serial and parallel interface, magnetic tape reader, floppy

ISSN 1335-8243 c© 2008 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 8, No. 4, 2008 57

disk and harddisk. Interaction with user was through a ter-
minal connected to serial interface.

10.1. The compiler plugin

In present time only assembler compiler is imple-
mented. Its specification is similar to original specifica-
tion [15]. However it contains some extensions, e.g. un-
limited size of labels, unlimited deepness of nested macros,
etc.

The output of the compiler is a file in Intel HEX [16]
format, which was both in past and in present often used
and many (older or specific) programs are compiled into
this format. The aim was to preserve ”bidirectional com-
patibility” - a program created in emulator can be run on
real source machine and vice-versa program created in real
source machine can be run in the emulator.

10.2. The CPU plugin

The CPU emulation uses interpretation technique (de-
scribed in section 7.1). The communication with main
module and other plugins is performed via interfaces.

The CPU gives to the user a possibility to set the
clock speed of emulated processor in range from 100 to
99999kHz. Of course these are logical values and in real
conditions we didn’t reached the top (system has to be a
little overdesigned). Implementation of ensuring the fre-
quency on a target machine with different frequency is very
interesting (synchronization of frequencies is ensured only
in emulator’s run-time, not in stepping).

running = true;
while (running) {

startTime = now_time();
ec = 0;
while (ec < cte) {

opcode = fetch_from_memory(PC);
PC = PC + 1;
tmp = decode_and_execute(opcode);
ec = ec + tmp;

}
generateInterrupts();
emulateGraphics();
emulateSound();
...
// time synchronization
endTime = now_time();
timeLength = endTime - startTime;
if (timeLength < timeSlice) {

// time correction =
// emulation is too fast
wait(timeSlice - timeLength);

}
}

Fig. 12 Algorithm of the emulation with time synchronization

The main algorithm of emulator’s work (Fig. 5) is pre-
served. Let’s combine the algorithm with CPU emulation

algorithm (Fig. 8) into one single algorithm, where is im-
plemented also the principle of time synchronization.

In the algorithm shown in Fig. 12, after every instruction
fetch PC is incremented. This is not correct if instructions
are more than 1 byte long (suppose N bytes). For that rea-
son let’s suppose that PC is incremented (N − 1) times in
function fetch_from_memory().

The algorithm uses new methods: now_time() - deter-
mines actual time (e.g. in ms) and wait() - waits certain
time interval given as a parameter (e.g. in ms).

First some fixed time interval (timeSlice) is chosen, in
which should be performed one single iteration of an emu-
lation loop. This value is mostly empiric-defined.

Before every run of CPU emulation (second loop) and
after of every device emulation is determined actual time.
Now a list of conditions follows, which define how the em-
ulation is synchronized.

endTime− startTime = timeSlice, (2a)
endTime− startTime > timeSlice, (2b)
endTime− startTime < timeSlice, (2c)

Emulation is perfect-synchronized, if condition 2a is
true. This state is however ideal, not real.

Emulation is slow (run-time frequency of emulation
lower than it should be), if condition 2b is true. Algo-
rithm in Fig. 12 doesn’t implement speed up of the emu-
lation, which is almost impossible to reach (can be partially
reached by skip of showing some frames in video/display
emulation, or by decrease sound quality, etc.).

Finally the emulation is fast (run-time frequency is
above the value set), if condition 2c is true. Algorithm in
Fig. 12 solves this problem by waiting some time (method
wait()).

Final part is the calculation of the cte6 parameter. This
parameter depends on: (a)set frequency f , (b)emulation
time of other devices th. Next, one machine cycle is per-
formed in one period of CPU frequency and for every in-
struction we know number of its machine cycles in which
the instruction is performed (slices Ti in Fig. 6).

Formula for cte calculation without consideration of
emulation time of other devices can be derived as follows:

T =
1
f

(3a)

cte =
timeSlice

T
(3b)

cte = timeSlice∗ f , (3c)

If we know the fixed emulation time of other devices th,
then in the formula 3c value timeSlice is replaced by the
value of timeSlice− th.

10.3. The memory plugin

Operating memory is cooperating with CPU in very
close manner. According to Von-Neumann’s architecture,
there are stored both program and data. In the principle,
operating memory represents linear ordered sequence of
memory cells (mostly implemented as an array).

6c
¯
ycles t

¯
o e

¯
xecute in one time slice

ISSN 1335-8243 c© 2008 FEI TUKE

58 Software Based CPU Emulation

There exists many types of operating memories. From
programming/implementation point of view, it is worth to
speak about two types only. Probably the most used type in
the present is RAM (Random Access Memory) type, which
represents a kind of memory, where it is possible to read or
write data to any cell. Next type of memory is ROM (Read
Only Memory) type, which represents a kind of memory,
where it is possible to read data from any cell only.

Present implementation of the plugin can create one
continuous sequence of cells (array), whose any part can
be marked as RAM or ROM (it is possible to change it
dynamically). The user can interact with the plugin by its
graphic interface.

Some older architectures (and probably all present) sup-
ported direct device access to the memory (DMA). The plu-
gin supports this option, too. In a case that a device wants
to use DMA, it has to register itself by certain method of
the plugin interface with a parameter representing a range
of addresses that device wants to use. Then, if some change
happens in the range, the plugin will send a signal to the
device, so the device doesn’t have to care about periodic
checking the memory. However the device programmer
should be careful of using address overlapping.

10.4. The terminal device plugin

Currently two peripheral devices are implemented - a
terminal and a floppy disk. We will describe the terminal
only. It is an emulation of the ADM-3A [17] terminal, that
was used by the Altair computers.

It is a pure text-mode display with a keyboard. This way
users can enter input data into a computer and also they can
see results of the computation.

The device was plugged into serial card MITS SIO
through a standard RS-232 interface. Up to now the emu-
lator doesn’t support the ability of hierarchical device con-
nections, and for that reason the serial card is implemented
into the terminal directly. A work of the terminal however
is similar to the real device.

11. CONCLUSIONS AND FUTURE WORK

The main asset of the emuStudio is its structure. The
main module is intended to be an underlayer for various
plugins that present an emulated architecture. By adequate
selection of plugins user can create configurations of emu-
lated hardware that exist in real world. This feature poses
the user into position of an architecture designer, and au-
thors didn’t seen any available computer emulator software
having this ability.

Using this advantage, user can emulate also other ma-
chines than PC computers, as embeded devices, or abstract
machines.

Thanks to plugin implementation, the emulator is go-
ing to be perspective software, which exceeds boundaries
of its purpose - emulation of 8-bit processors only. The
license of the emulator gives programmers right for rewrit-
ting/modifying source code and there also exist developer
manuals describing how to create plugins for the platform.
Then it is only up to programmer himself, how accurate and

interactive plugins will be.
A fact that the whole platform is implemented in Java

language, makes the emulator very portable. It can run
on every system that supports Java Runtime Environment
(JRE), Standard edition.

Devices (such as harddisk, floppy drive, printer, display
or keyboard) can be designed in a way that they will be
in connection with real hardware and therefore also results
will be real.

In the nearest future we want to implement read-
ing/storing configurations for devices, hierarchical device
connections and some new devices, such as tape drive. Till
now we are able to run several operating systems (all from
the RAM/ROM images): CP/M v2.2 (by Digital Research,
year 1979), Altair DOS v1.0 (MITS, inc., year 1977) and
Altair Basic v4.1 (MITS, inc., year 1977) image.

As the next step we plan to extend the emulator with
another computer architectures, and also with abstract ma-
chines. The final result should be the emulator platform
involving as large set of a teaching material as it is possi-
ble.

ACKNOWLEDGEMENT

This work was supported by VEGA Grant No.
1/4073/07 Aspect-oriented Evolution of Complex Software
Systems.

REFERENCES

[1] BARRIO, V.M.: Study of the techniques for emulation
programming, 2001
http://personals.ac.upc.edu/vmoya/docs/

emuprog.pdf

[2] DAVIS, M.: The Universal Computer: The Road from
Leibniz to Turing. W. W. Norton and Company, 2000,
257 pages, ISBN 0-393-04785-7

[3] HUDÁK, Š.: Theoretic Informatics, 2002 (in Slovak)
http://hornad.fei.tuke.sk/predmety/ti/ti.ps

[4] HUDÁK, Š.: Machine oriented languages. FEI of
Koice, 2003, 218 pages, ISBN 80-969071-3-1 (in Slo-
vak)

[5] TURING, A. M.: On computable numbers, with an
application to the Entscheidungsproblem
http://web.comlab.ox.ac.uk/oucl/research/

areas/ieg/e-library/sources/tp2-ie.pdf

[6] HOPCROFT J., ULLMAN J.: Introduction to Au-
tomata Theory, Languages and Computation. Addison-
Wesley, 1979, 1st edition, ISBN 0-201-02988-X

[7] JELŠINA, M.: Architectures of computer systems.
ELFA, Koice, 2000, ISBN 80-88964-41-5 (in Slovak)

[8] Ultra HLE
http://en.wikipedia.org/wiki/UltraHLE

[9] High Level Emulation
http://en.wikipedia.org/wiki/High-level_

emulation

[10] SCHERRER, T.: Home of the Z80 CPU

ISSN 1335-8243 c© 2008 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 8, No. 4, 2008 59

http://www.geocities.com/SiliconValley/Peaks/

3938/z80_home.htm

[11] ANGELONE, M.: Approaches for Universal Static
Binary Translation, 2006
http://www.cs.drexel.edu/static/reports/

DU-CS-06-02.pdf

[12] Just-in-time compilation
http://en.wikipedia.org/wiki/Just-in-time_

compilation

[13] TRÖGER, J.: Specification-Driven Dynamic Binary
Translation, 2004
http://savage.light-speed.de/pdf/phd2004.pdf

[14] Altair 8800
http://en.wikipedia.org/wiki/Altair_8800

[15] 8080 Assembly language programming manual, Intel
corp., 1975
http://www.tech-systems-labs.com/booksdata/

8080-asbly-pro.pdf

[16] Intel Hexadecimal Object File Format Specification,
Revision A, Intel corp., 1988
http://pages.interlog.com/~speff/usefulinfo/

Hexfrmt.pdf

[17] Lear Siegler, Inc. (LSI) Terminal ADM3A
http://www.tentacle.franken.de/adm3a/

Received March 22, 2008, accepted November 28, 2008

BIOGRAPHIES

Slavomı́r Šimoňák was born on September 23, 1974. He
graduated from the Technical University of Košice, Fac-
ulty of Electrical Engineering and Informatics in 1998. He
obtained PhD degree in the field of computer devices and
systems in 2004. Now he is an assistant professor at De-
partment of Computers and Informatics, Faculty of Elec-
trical Engineering and Informatics, Technical University of
Košice. His scientific interests are oriented towards formal
methods for design and analysis of discrete systems and
their integration, problems related to theory of program-
ming and machine-oriented languages.

Peter Jakubčo was born on 2.6.1985. Currently he is a stu-
dent at Department of Computers and Informatics on Fac-
ulty of Electrical Engineering and Informatics, Technical
university in Košice. He is interested in computer emula-
tion, operating systems and programming languages.

ISSN 1335-8243 c© 2008 FEI TUKE

