
56 Acta Electrotechnica et Informatica Vol. 8, No. 2, 2008, 56–63

ISSN 1335-8243 © 2008 FEI TUKE

NOTES ON THE SOFTWARE EVOLUTION WITHIN TEST PLANS

*Csaba SZABÓ, *Ladislav SAMUELIS
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 055/602 4120, 4313,
E-mail: csaba.szabo@tuke.sk, ladislav.samuelis@tuke.sk

ABSTRACT
 Nowadays, software engineering research community pays much attention to the development software design methods. We

observe relatively much less attention in the field program test research. Generally, a good test plan enhances not only the reliability
but also increases the reusability of the created test plan in the regression testing phase that will follow after implementing the
changes into the system.

After describing the motivations and the brief theoretical background we introduce the A-shaped model of the Software Life
Cycle (SWLC) with emphasis on the change propagation across the design and test plans. This model consolidates the system design
and test planning phases across the SWLC.

We define relations between tests and tested elements in a form of existence dependencies: all design must have at least one test,
and tests without an attached design element may signalize errors. Further we introduce the specification of a system dependence
graph for modeling and visualization of dependencies between the elements. This feature is important during the visualization of the
change propagation. The results are demonstrated on an example and finally discussion follows devoted to the similar models.

Keywords: A-shaped model, change propagation, incrementality, software design, software life cycle, system dependence graph,
test plan

1. INTRODUCTION

Decades long goal has been to find repeatable,
predictable methodologies or processes that improve
productivity and quality of the software development.
Some try to systematize or formalize the seemingly unruly
task of writing software. Others apply project
management techniques to this task.

The idea of this paper stems from the needs to speed
up the inclusion of a new functionality into the system by
the incremental change and to avoid time losses due to
regression test selection and/or creation.

During software development, we often have to
modify arbitrary parts of the system or just to extend it by
a new component. In case when the modified component
is used (or referenced) by any other component of the
system, it is necessary to change the influenced
components too. This process is called change
propagation [11]. After implementing the required
changes, the regression testing of the system follows in
order to ensure that the functionalities remained the same.

In order to shorten (minimize) the development time of
software projects, it is very useful to design a model for
speeding up the test preparation for later regression
testing. This paper introduces the A-shaped model for
decreasing program development time by consolidating
the design and test planning phases using the incremental
change approach.

2. THEORETICAL BACKGROUND

There exist two approaches to facing the SW crisis:

• to develop a general methodology for the
development of all kind of SW systems, or

• to develop special methods that will be devoted
to the special goals of the project.

2.1. Methods and models

Lots of SWLC models and related methods are

discussed in [3, 9, 15]. Some of them are more universal;
others prefer early release to universality. Next, we
present (not exhaustively) some examples of SWLC
methods:

1) Waterfall [3, 9, 16]

2) Staged [13]

3) Spiral [1, 16]

4) Incremental (also in [14])

5) Unified Process (UP) [1]

6) Extreme Programming (XP) [4]

7) Feature Driven Development (FDD) [21]

8) Test Driven Development (TDD) [2]

9) Dynamic System Development Method
(DSDM) [20]

10) Agile Model Driven Development (AMDD) [20]

The first six methods listed above are discussed as
core methods at large, the second half of the list includes
methods that stam from XP emphasizing selected aspects
of development. Some of them support good maintenance
by partially less effective development, others support fast
development with less abilities in maintenance area. From
the viewpoint of testing, a method with good support for
both mentioned procedures is most acceptable.

We agree with the authors of [3, 15] and [20] that
there will be always requirements in the middle of
interest, but these are processed and taken into
consideration in different ways in each SWLC method.
Different is the level of abstraction in the views on the

Acta Electrotechnica et Informatica Vol. 8, No. 2, 2008 57

ISSN 1335-8243 © 2008 FEI TUKE

system being constructed and the used programming
technique too (e. g. object-oriented – OO).

2.2. Top-down versus bottom-up development

There are two main approaches in SW development
that are applied in the methods mentioned above: top-
down and bottom-up development. Brief description
follows.

Top-down development (TD).

This is called also as “model driven”, where the
requirements (expressed in model) are transformed into
the target code.

Bottom-up development (BU).

This process reuses patterns of the target code (or
Components Of The Shelf - COTS) in order to fulfill the
requirements of the specifications. This process may
involve unwanted functionalities into the final product.

In practice the SW industry blends these two
approaches.

2.3. Iterations and incrementality

As noted above, there are many approaches that
present some aspects of the incrementality utility and are
used under names like incremental learning, evolutionary
and revolutionary rework, program synthesis and
incremental building.

Therefore, a clear definition of the ”iteration” and the
”incrementality” turns out to be vital. Here are the
definitions:

• We define that ”iteration” refers to repeating an
activity, e. g. phases, in the software development
process. Iteration is applied e. g. in refactoring when
developers perform semantics-preserving structural
transformations usually in small steps. Motivation for
the improvement may be focused towards the
enhancement of the efficiency of the code with
respect to the time or space complexity or towards the
improvement the structure so that developers can
more easily understand, modify, evolve and test it.
The research domain that addresses this problem is
referred also as restructuring.

• On the other hand ”incrementality” refers to the
process of adding new functionalities through
successive implementations. This is a significant and
essential difference to the iteration and deserves much
more attention. First of all the incrementality
principle has its mathematical roots and is explained
in the theory of inductive inference [17]. This
approach to problem solving is also called
generalization. Incremental software development is
sometimes called build a little, test a little. We may
observe the similarity between building concepts and
models in software engineering and building

hypotheses in mathematics. This process is very
clearly highlighted in Polya’s classic work, ”How to
Solve It” [18].

2.4. The place of testing

Each SWLC model defines a sequence of phases. One
of them is testing. The role of testing is clear: to ensure
the product offers the required features. The placement of
the test differs in the sequence of phases.

In the case of UP, each phase may contain a number of
workflows and testing is one of the core processes. The
tested products may be different [1].

Extreme programming stipulates a set of best practices
that collectively encourage core values such as feedback
and simplicity. The feedback occurs in the form of tests,
by delivering products in short iterations, and by the
simple expedient talking between the developer and
customer. Rapid development is achieved by rapid
refactoring [4].

TDD is not about testing, it is a development method
that uses tests in its steps [2]. The point of TDD is to drive
out the functionality the software actually needs, rather
than what the programmer thinks it probably ought to
have. The way it does this seems at first counter-intuitive,
if not downright silly, but it not only makes sense, it also
quickly becomes a natural and elegant way to develop
software.

We can conclude this section by the statement that all
SW development methods deal with the problem of
testing and define a stable place for it in their workflows.
Fig. 1 visualizes this statement, where: R denotes
requirements, D represents design and P stands for the test
plan. The triangle denotes the relationships between these
three key subjects.

Fig. 1 The triangular relationship between R, D and P

2.5. Testing and test design

Software testing is the process that helps identifying

the correctness, completeness, security, and quality of the
software under development. Testing is a process of
technical investigation, performed on behalf of
stakeholders, that is intended to reveal quality-related
information about the product with respect to the context
in which it is intended to operate. Testing phase is part of

58 Notes on the Software Evolution within Test Plans

ISSN 1335-8243 © 2008 FEI TUKE

each SWLC either TD or BU, either less or more so-
called agile.

Testing is important before any release. This is the
claim of all release-oriented methods. Others claim that
testing may be independent from the release phase and it
has to be executed as often as possible. In all cases, testing
is very relevant to the final product and documentation.
However, we agree with the Dijkstra’s statement that “test
could reveal bugs but do not prove the correctness of the
program”.

To run tests effectively, we have to have a test plan.
The more revised plan we have, the better. To get one, we
need to design it and that is why it is a part of the SWLC.

2.6. Test plan design

Test plan design is a phase and a model too. From the
point of view of the development process, it is a group of
activities around test preparation: planning, generating or
developing tests. On the other hand, it is a model that may
have its sophisticated structure according to the selected
standards and it may be documented as well.

Test plan preparation answers for the questions: what?
when? why (not)? how? who? These are classical
questions of planning.

Test plan design in its closer meaning includes all
tasks according to the creation of the test elements -
concretization of the what-how-when question triangle.

There is another way of test plan preparation: partial
replacing of the design by generation. Test generation [8]
is the automated way of test creation that can be made
from:

• application model, or

• source code.

Test structure and documentation are the other side of
test design. This point of view declares a model.

The use of standards in the testing phase is important
from the maintainability point of view. Common
standards or categories used more or less are as follows:

• nothing or intuition,

• (internal) company standard,

• programming standard (e. g. JUnit [2, 5]),

• TTCN/UML TP [7],

• IEEE 829–1998 [6].

These standards describe the wanted structure as well

as the way of documenting the testing process. Their
combination enhances the reliability of the final product.

All above-mentioned standards recommend a structure
that can be implemented in a specific form of a system
dependence graph (SDG) investigated by Yu and Rajlich
in [11] and by many others from the incremental SW
development community.

2.7. Regression testing

Regression testing is the execution of all tests on the
system during its development and/or before a major or
minor release of the system being developed. It includes
all unit, integration, functional and system tests.

For each kind of tests there must exist an execution
plan and a set of expected results [12]. This plan results
from requirements analysis and from the expected
programme results.

Regression testing is an integrated part of extreme
programming (XP) [4]. In this methodology, the design
documents are replaced by extensive, repeatable, and
automated testing of the entire software package at every
stage of the SWLC.

The core regression testing method may include all
tests for the system. This claim is more precise in the way
that regression testing ensures that all old functionalities
remain in the system and work further properly.

In the case of very large systems, the execution of all
tests may take a longer while, therefore new techniques
are needed to decrease the amount of the tests by selecting
only the ones which are in some way related to the change
executed during the system evolution. This task can be
fulfilled either using a table of test-code coverage or by
consideration of the relations between tests and the
elements of the design at higher level of abstraction.

The better-known method of test-code coverage needs
an initial execution of the tests on the older system (before
the changes are applied) that creates the table (records all
relations at the level of lines of source code). The
significant differences in the lines than signalize which
tests have to be re-run during regression testing.

3. THE A-SHAPED MODEL

This model (shown on Fig. 2) copies the classical
sequence of actions from the waterfall model for both the
application and its test development. It stems from the
requirements and branches into two processes, which end
with implementation of the application resp.
implementation of the test plans. We introduce here and
emphasize the mutual influence between the development
and test planning phases based on observation we state
that some activities may be executed in parallel.

Fig. 2 The A-shaped Model

Acta Electrotechnica et Informatica Vol. 8, No. 2, 2008 59

ISSN 1335-8243 © 2008 FEI TUKE

We describe the activities within this model as follows:

Requirements engineering (R).

In this phase the requirements [1, 10, 15] are gathered
and preprocessed in a way of their separation into two
sets. One of these sets is the basis for the application
development, the another one is the basis for designing the
tests.

Design – high level (DH).

This phase includes the implementation of the
functionalities at the highest level of abstraction.

Design – low level (DL).

In this phase we refine the ideas from the higher levels
iteratively and incrementally. In separated cases, the test
planning process may produce tests due to those some
selected elements of the design may change i. e. test-
driven development of the functionality [2, 4].

Planning – high level (PH).

This phase is about functional test planning. Test plans
are prepared for testing functionality and are decomposed
(hierarchically) at this level.

Planning – low level (PL).

The detailed planning of tests and dependency analysis
follows the decomposition. After the development of the
structure of functionality and design-oriented tests, a new
functionality can be introduced via inclusion of a new
functionality oriented test or via a new design element at
the selected level of abstraction. In other words, inclusion
(or deletion) of functionalities may be executed in both
test driven [2, 4] and classical (in the design process [3])
way.

Implementation (I).

This is the final phase of refinement (design) where all
the coding takes place.

Test implementation (T).

The test plans are implemented in the form of a
program, or other testing code.

3.1. Description of the Phases and their Results

Analogously to the waterfall model, we distinguish
between R- (from Requirement), H- (from High level), L-
phases (from Low level) and implementations in this
model.

R-phase

The first phase belongs to the requirement engineering
[1, 10]. The outputs are two subsets from the perspective
of their usefulness in the design and testing. During this
process the requirements are decomposed and categorized.
Categories serve for better requirement tracing and
separation.

Two phases follow after the R-phase in parallel: higher
level design and planning of testing.

H-phases

At the higher level, we can see two phases executing in
parallel. Both of them are based on functional and
structural decomposition as refinement activities. Higher
level design interprets architectural ideas of the system
being developed, higher level planning outputs functional
testing concepts at a very high level of abstraction – the
basic structure of the upcoming tests on both architectural
and behavioral base.

Both phases result into their lower level
correspondents.

L-phases

The core of the SWLC model is built up from these
phases, DL and PL (the L-phases). It is the point where the
parallel threads are synchronized. These two phases may
be executed in parallel but there is a significant influence
between them that makes the core of the method
incremental.

A detailed model of the system is designed in the DL

phase that includes the full architectural and behavioral
specification of the system in the modeling language
selected by the designer. The whole model is built from
the results of the higher level design using similar
refinement steps. The only difference is, that all data are
specified here with the design of the operations with them.

The PL phase results into the model of the tests, the
behavioral and architectural specification of tests, test
contexts and data. The test cases are refined to the crisp
values and dependency definitions (e. g. which design
element is tested by which test case). These results come
from the stepwise refinement of higher level test
specifications.

Implementation phases

Implementations (the final system and the
implemented tests) are generated during the whole
development many times as prototypes. These
implementations are the outputs of the actual models at
the L-phases. The line between the design and the
implementation is clear: the point of applying a concrete,
programming language specific aspect. The mentioned
border is that between the portable and special
architecture.

Further, the implementation of the system is stressed

against the corresponding tests in the testing procedure.
The features of A-shaped model (as always from a

certain aspect) can be divided into two groups [3], e. g.
advantageous and disadvantageous ones. All these already
known features are discussed in [10].

3.2. Remarks on the evolution in the test plan

The model of the tests includes records about the used

(tested) design elements, which are the traces for the
change propagation or just for the dependency monitoring.
These records allow defining change propagation across
both models.

60 Notes on the Software Evolution within Test Plans

ISSN 1335-8243 © 2008 FEI TUKE

Changes caused by design activities propagate changes
in the test model in the form of a changing requirement
what and/or how to test. In this way, changing the initial
requirements for the affected tests does involve change
propagation. The adaptation process (to the change) is de
facto started as introduction of a new requirement or a
modification into the requirement set. Looking at it from a
wider perspective, there is an evolution inside the SWLC
model. This idea works vice versa for the design thread.

3.3. Remarks on the parallelism

Considering the two outputs from the R-phase (no

influence between L-phases) we can split the activities
into two groups. The design thread is than the same as in
the waterfall model. The test development represents as a
separated development of the testing application.

The parallel threads allow an independent design of
tests and the application, but without the joining of them
we loose the ability to design complete tests, e. g. tests
specialized (passed) to the designed components of the
system. On the other hand, joining of the test planning
thread with the application design one provides the ability
of test driven development [2] of some parts of the
system.

Considering both test evolution and parallelism in A-
shaped model we can animate these processes as the work
around an ever-changing hypothesis (hi) as we show
in [9].

4. SYSTEM DEPENDENCE GRAPHS
 – A SOLUTION?

The models used in the different stages of the SW
development differ and there is no universal notation thus
far that could be used for the requirement, application and
test modeling with considering the weak and strong
relations between them.

Using system dependence graphs (SDGs) is a well-
understood method for modeling relationships between
non-homogeneous elements (elements that are internally
implemented in different ways and may in general belong
to different modeling aspects) as requirements, tests and
implementation details of the application are. Considering
the relations shown on fig. 1 there are three types of so-
called sub-models representing the set of requirements as
R, the application model elements as D (the design), and
the set of tests as a whole as P (the test plan).

4.1. The R sub-model

The first sub-model according to the A-shaped SWLC
model phases is the model of the requirements. It
represents the relations between the requirements as their
category and priority too. The relations may be of type „is
part of“, „depends on“ etc. The categories are project
specific and could represent the belonging to the bigger
parts of the system as requirement groups. Prioritization of
the requirements may be taken from the DSDM [20]
method: MoSCoW [19], e. g. must, should, could, won't
have but would like in the future.

4.2. The D sub-model

Design representation is a standard SDG with a level
of abstraction chosen by the designers. It is not important
to have the slices at instruction-level. This sub-model just
must make possible the change propagation when a new
element is introduced, an existing removed or
changed [11].

4.3. The P sub-model

The P sub-model follows the tests' structure and as it is
a SDG the relationships between the tests too. The
relations may be hierarchical („part of“) or defined by the
correspondence to the categories of the related
requirements. The granularity of the elements of this
model depends on the chosen way of representation. In the
case of textual descriptions [6], the elements are those
documents. In the case of object-oriented modeling of the
tests, the elements are as defined in the modeling language
of the chosen framework, e. g. UML Testing Profile [7].

4.4. Putting the sub-models together

Now, we know about the sub-models and the main
ideas of their relationships (fig. 1). Following that, we
define a new kind of dependence at project-level: inter-
part dependence.

Inter-part dependence (IPD).

IPD interprets relations between elements in different
sub-models that are processed in the SW project. Those
can be between elements from the R and D sub-models
denoting implementation of required feature, ones from
the R and P sub-models denoting functional testing
aspects, or ones from D and P sub-models denoting unit,
integration and/or system testing aspects [1, 3, 5, 15, 16].

The creation of a complex SDG for the whole project
including all sub-models and IPDs gives a tool for dealing
with changes in any sub-model as with a more complex
change that can influence the product and its evaluation as
well. E. g. the change of the requirement may cause a
change in the SW product and its testing procedures too.

4.5. The web service example

Creating web services (WS) is a typical TD process
that allows only narrow changes to the requirements
during both high and low level design stages without
touching a huge group of these requirements. Therefore,
we can divide the set of the tests into two sections
according to the implementation-specific and the
implementation-independent (those that evaluate fulfilling
of basic requirements) tests. This is a typical use case
where the A-model is applicable, because the functional
tests can be developed parallel to the high level design of
the WS. Any modification to the implemented WS are
easier to made due to the already existing SDG that was
built during the development of the basic implementation.

Acta Electrotechnica et Informatica Vol. 8, No. 2, 2008 61

ISSN 1335-8243 © 2008 FEI TUKE

Due to the limitations on the length of this paper, we do
not include all details about this example.

Step one: execute the R-phase.

We collect and organize requirements to the WS. In
our example, these are related to the task of reporting
activities (e. g. new posts) within a web forum of a
specific portal. The requirement categories will be as
follows: user-interface (UI), portal-specific (PS), other.
We send all directly implementable requirements to the
next design phase and all functionality related ones to the
high level test planning phase. The relations between these
requirements define a basic SDG for them.

Step two: parallel processing of the requirement-
subsets by the designers (T1) and test developers (T2).

Both teams describe the required interface in a
language they can work with in the next periods, e. g.
WSDL [22]. T1 members create the higher level structure
of the WS implementation, T2 members the higher level
structure of the general test plan including basic
communication aspects. Both teams extend the parts of the
SDG related to their issues.

Fig. 3 The highest level view on the SDG being built

Fig. 3 shows the highest level view on the WS, the

only known information is that requirement are related to
the design and to the test plans. In this phase we do not
have any knowledge about the relations between tests and
the design (e. g. the application being developed).

Step three: getting synchronized.
First, the teams join their partial SDGs on the basis of

correspondence to the requirements, e. g. we get a more
complex SDG. After that, both teams work independent to
each other, but they follow the indications got from
change propagation across the SDG. It means, that a
change in the lower level design of the WS may indicate
the need to update some related tests (or the absence of
them). The main issue of the A-model is there: tests
change in time with the application as they were
maintained in an evolutionary development process. Using
SDG with bidirectional edges representing IPD, change
propagation can arise by accessing the test plans first as
well.

Step four: implementing the WS and the test
(separately).

Members of T1 and T2 compile their implementations.

Step five: deploying the WS and running the test
application.

T1 deploys the WS and sends required informations to
T2 (e. g. WS location URL), then T2 members run their
tests to evaluate the WS, write their reports etc.

Maintenance

If any failures are found in the WS, the already
existing SDG indicates the parts of the system related with
the failed test(s).

WS development is not an area, where the

evolutionary approach is commonly used due the facts
listed above, but the hard maintenance can be made easier
using the A-model methodology.

Figure 4 shows an example evolution indicating
situation after a change in a function inside the D sub-
model. Colors on the figures have the meanings as
follows:

1. green areas represent the sub-models such as R,
D, P;

2. white ellipses are the nodes of the SDG;

3. text in the ellipse is the (unique) name of the
concrete element;

4. black oriented edges represent relations within a
sub-model;

5. red bidirectional edges represent IPDs;

6. red highlighted ellipsis is the change location;

7. yellow highlighted ellipses are the places where
the change could be propagated.

At the first sight all related elements of the project are
to be updated, therefore there is a need to evaluate the
strength of the change to avoid the indication of irrelevant
(but related) elements.

That needs an evaluation function or better a
prediction mechanism.

62 Notes on the Software Evolution within Test Plans

ISSN 1335-8243 © 2008 FEI TUKE

Fig. 4 Evolution indicated after changes in method handle_request

5. CONCLUSION

We showed selected number of methods of SW
development and the placement of testing and/or test
planning within them. Our result is that the majority of
methods do not fully cover the problem of test design.
They only specify the placeholders for the what-how-when
question triangle. Other methods such as TDD rely on the
test model even if it is represented in a form of lists and
does not include any relationships between the tests.

We have introduced the A-shaped SWLC model and
its pros and cons. This model covers the test planning
phases of the SW development; it shows the location of
these phases and the dependencies between them.

The model covers the evolution of the tests via
considering the design as the extension of the set of the
requirements for test design and planning. It may include
the possibility to generate test cases to the design [8], but
with the extension to map the relations between these test
plans and tested design elements.

We showed a shortened example of a use case of WS
development task, where classical methods do not fully
support maintenance or fail as a core TDD may due the
lack on interface description.

The next step may refer to the extension of the system
dependence graph [11] by the test plans and the
requirement hierarchy and putting it to a higher level of
abstraction (considering not only classes as elements

mostly within the D-model's SDG) to allow the usage of
the model with other than OO methods.

ACKNOWLEDGMENTS

The research was supported by the grant Technologies
for Agent-based and Component-based Distributed
Systems Life-cycle Support, Scientific grant agency project
(VEGA) No. 1/2176/05.

REFERENCES

[1] J. Arlow and I. Neustadt. UML 2 and the Unified

Process: Practical Object-Oriented Analysis and
Design. Addison-Wesley, 2nd edition, June 2005.

[2] K. Beck. Test Driven Development: By Example.
The Addison-Wesley Signature Series. Addison-
Wesley, 2003.

[3] D. Bell, I. Morrey, and J. Pugh. The Essence of
Program Design. Pretince Hall Europe, 1st edition,
1997. Hungarian translation: Programtervezés,
Kiskapu Kft., 2003.

[4] Chromatic. Extreme Programming Pocket Guide.
O’Reilly Media, Inc., 1st edition, July 2003.

[5] E. Gamma and K. Beck. JUnit, Testing Resources
for Extreme Programming.

Acta Electrotechnica et Informatica Vol. 8, No. 2, 2008 63

ISSN 1335-8243 © 2008 FEI TUKE

 http://junit.org/index.htm, 24 November 2005.

[6] IEEE Standard for Software Test Documentation,
IEEE 829–1998, 1998.

[7] Object Management Group. UML Testing Profile,
Version 1.0, July 2005.

[8] J. Offutt, Sh. Liu, A. Abdurazik, and P. Ammann.
Generating Test Data From State-based
Specifications. The Journal of Software Testing,
Verification and Reliability, 13(1):25–53, March
2003.

[9] L. Samuelis and Cs. Szabó. Notes on the role of the
incrementality in software engineering. Studia
Universitatis Babes-Bolyai Informatica, 51(2):11–
18, 2006.

[10] Cs. Szabó and L. Samuelis. The A-Shaped Model
of Software Life Cycle. In Proceedings of 5th
Slovakian-Hungarian Joint Symposium on Applied
Machine Intelligence and Informatics, Poprad, 25-
26 January 2007, pages 129-135, 2007.

[11] Z. Yu and V. Rajlich. Hidden dependencies in
program comprehension and change propagation. In
Proc. International Workshop on Program
Comprehension, pages 293–299. IEEE Computer
Society Press, 2001.

[12] W. D. Woodruff and R. Pisechko. Efficient Test
Planning and Tracking. Software Quality
Professional, Volume 5, Issue 2, March, 2003.

[13] V. Rajlich and K. Bennet. A Staged Model for the
Software Life Cycle. IEEE Computer, 33(7):66-71,
July 2000

[14] V. Rajlich. Incremental change in object-oriented
programming. IEEE Software, 21(2):62-69,
July/August 2004

[15] I. Sommerville. Software Engineering. Addison-
Wesley Publishers Ltd., Pearson Education Ltd.,
Boston, MA, USA, 7th edition, 2004.

[16] Cs. Szabó. The V-shaped model from the testings
point of view. In Proceeding from the 6th PhD
Student Conference and Scientific Competition of
Students of Faculty of Electrical Engineering and
Informatics, Technical University of Košice, pages
127–128, Košice, Slovakia, 2006. elfa, s.r.o.

[17] D. Angluin and C. H. Smith. Inductive Inference:
Theory and Methods. Computing Surveys,
15(3):238–269, September 1983.

[18] G. Polya. How to solve it: A New Aspect of
Mathematical Method. Princeton University Press,
2nd edition, 1957.

[19] MoSCoW Prioritisation. URL:
http://www.protoolkits.com/Analysisandrequiremen
ts/Analysistechniques/moscowprioritisation.html

[20] P. Abrahamsson, O. Salo, J. Ronkainen, and
J. Warsta. Agile software development methods –
Review and analysis. VTT Publications, Otamedia
Oy, Espoo, 2002.

[21] Feature Driven Development (FDD),

http://www.featuredrivendevelopment.com/

[22] Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl

Received Jun 18, 2007, accepted November 12, 2007

BIOGRAPHIES

Csaba Szabó was born in 1979. In 2003 he graduated
(MSc.) with distinction at the department of Computers
and Informatics of the Faculty of Electrical Engineering
and Informatics at Technical University in Košice.
Currently, he is a PhD. student in the field of software
engineering and information systems; his thesis title will
be "The A-model: Emphasizing the evolution within the
tests during software design". Since December 2006 he is
working as a research assistant with the Department of
Computers and Informatics. His scientific research is
focusing on object oriented programming and test design.
In addition, he also investigates questions related with the
quality and maintenance of programme systems.

Ladislav Samuelis, Assistant Prof.: Obtained MSc. in
Electrical Engineering at Prague Technical University
(1975), and PhD. in Informatics at Budapest University of
Technology (1990). Has been engaged in research into the
automatic program synthesis at the Institute of Computer
Technology at the Technical University of Košice,
Slovakia. Since 1998 affiliated with the Dept. of
Computers and Informatics, Faculty of Electrical
Engineering and Informatics, taught Operating systems,
Database systems, Computer Networks and Java.
Currently is involved in software engineering metrics and
in the principles of software evolution.

