
Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

ON OPTIMIZING PROOF SEARCH IN LINEAR LOGIC
BY VALUE ITERATION METHOD

*Valerie NOVITZKÁ, **Anita VERBOVÁ
*Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 055/602 4182, E-mail: Valerie.Novitzka@tuke.sk
** Department of Computers and Informatics, , Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 055/602 4144, E-mail: Anita.Verbova@tuke.sk

SUMMARY
In this article we are interested in proving of linear logic sequents. In linear sequent calculus one sequent can have more

than one proof tree. We choose the best among them satisfying some criterion. There can occur some non-deterministic
choices in the process of building the proof of a sequent. We introduce probabilities to these proof constructions. Therefore
we can apply one method of stochastic programming (value iteration method) to determine the optimal way in the proof
search.

Keywords: stochastic programming, value iteration method, non-determinism, linear logic, proof search.

1. INTRODUCTION

Within the context of the construction of correct
programs, some applications are based on the
following paradigms: proofs-as-programs and proof
search-as-computation. These paradigms are called
the Curry-Howard correspondence that associates a
λ-term to a proof in intuitionistic logic [7]. From a
given specification, expressed in the given logic, we
can construct a proof by the first paradigm
mentioned above and extract a program from this
proof. The second paradigm focuses on the proof
construction: the proof search process corresponding
to computation. Thus the common problem is to be
able to construct proofs in the given logic. Here we
consider linear logic (LL) that has some applications
to computation, proof construction, for concurrent or
functional programming [12].

Many works on linear logic and their
applications to computer science [1, 4, 5, 11, 13]
involve methods and techniques to deal with the
problem of proof construction in linear sequent
calculi. We propose algorithms and techniques by
the methods of stochastic programming for proof
construction in linear logic.

In linear logic proof construction there are non-
determinisms like the non-deterministic selection
between rules for different connectives and the non-
deterministic choice in the case of applying the rule
for the ⊕ connective, where we cannot affect the
choice of the rule ⊕1 or ⊕2 and also for the ⊗
connective, where we have n2 ways of partitioning
the context. ⊕ is called an external choice. On the
other hand there exists an internal choice &, which
expresses that we can control this choice. We
introduce probability to the linear logic rules. We
define the optimal strategy using value iteration
method, which is a method of stochastic
programming, that is a framework for modeling
optimization problems that involve uncertainty.

2. PROOF SEARCH

Linear logic has been introduced by Girard as
resource-sensitive refinement of classical logic. It is
a strong system of logic and it has full features of
first order and intuitionistic logic and additionally
supports concepts of disposable resources and their
consumptions. Linear logic provides a mechanisms
to destroy and construct formulas in the process of
proving, where formulas represent actions.

In classical logic, there is one conjunction (∧)
and one disjunction (∨); in linear logic, there are
two of each (conjunctions: ℘ , ⊗ ; disjunctions: &,
⊕). We are using one sided sequents to reduce the
number of rules considered. The linear logic
connectives and rules are presented in [6].

In linear logic proof search Andreoli formulated
in [2] the problem of the principal formula. In his
procedure SEARCH when an inference rule is to be
applied at a given node, two choices must be made:

1. choice of a (non atomic) principal formula in the
sequent at that node;

2. choice of an instance of the inference rule
associated with the topmost connective of the
selected principal formula.

Although all forms of "don‘t know" non-
determinism cannot be eliminated in these choices, a
definite permutation of inference rules shows that
some of these choices are not significant and either
need not be considered at all or could be treated
deterministically ("don‘t care" non determinism).

Linear connectives are divided into two groups
which behave differently with respect to the choice
of the principal formula.

• The ''asynchronous'' connectives:

 Multiplicative: ⊥ , ℘ , ?
 Additive: T , &, ∀

2 On Optimizing Proof Search in Linear Logic by Value Iteration Method

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• The ''synchronous'' connectives:

 Multiplicative: 1, ⊗ , !
 Additive: 0, ⊕ , ∃

The dual of an asynchronous connective is

synchronous and vice versa. A non-atomic formula
whose topmost connective is synchronous (resp.
asynchronous) is called a synchronous (resp.
asynchronous) formula. The difference in search
behavior between these two groups can be
characterized as follows.

If the principal formula which has been selected
in a sequent is asynchronous, then there is one and
only one applicable instance of the corresponding
inference rule, whereas if it is synchronous, one
among several (or sometimes no) instances has to be
selected.

Thus, if the synchronous formula A⊗B is
selected as principal formula in the sequent ├ Γ,
A⊗B, many possible instances of the corresponding
inference rule ⊗ can be applied, corresponding to
the different partitions of Γ along the two branches.
Similarly, a principal formula of the form A⊕B
requires the choice between the left ⊕1 and right ⊕2
instances of the corresponding inference rule. On the
other hand, when an asynchronous formula is
selected as principal formula, there is a unique
applicable instance of the corresponding inference
rule and its application is therefore deterministic.
Andreoli summarized these properties as:
• Asynchronous → Determinism

• Synchronous → Non-determinism

He proposed a proof normalisation, which can be
summarized as follows:
• If the sequent contains some asynchronous

formulae (at least one), then any one of them can
be immediately and randomly selected as the
principal formula (''don‘t care'' non-
determinism). Furthermore, as the formula thus
selected is by hypothesis asynchronous, the
instance of inference rule to apply is completely
determined. Consequently, as long as the sequent
contains an asynchronous formula, the search
can be made completely deterministic.

• When all the asynchronous formulae have been
decomposed, then a principal formula must be
selected non deterministically. But, as soon as
one formula has been selected, the search can
focus on it, i.e. subsequently select
systematically the subformula stemming from
the initial one as principal formula, and do so as
long as this subformula is synchronous.

Asynchronous formulae are decomposed
immediately as soon as they appear in the sequent
(hence their name ''asynchronous''). Synchronous
formulae are delayed until all the asynchronous
formulae have been decomposed, and must be non
deterministically selected to be processed; in other
words, synchronous connectives synchronize the

selection process and the decomposition process
(hence their name ''synchronous''). But once a
synchronous formula starts being decomposed, it
keeps on being decomposed till a non synchronous
(i.e. atomic or asynchronous) formula is reached.
This means that in a normal proof, each formula is
viewed as a succesion of layers of asynchronous
connectives and of synchronous connectives; each
synchronous layer is decomposed in a critical
section, i.e. which cannot be interrupted. It is called
a ''critical focusing section'' of the proof.

''Don‘t know'' non-determinism appears in the
search only during the critical focusing section,
which involve synchronous connectives
(asynchronous connectives generate only ''don‘t
care'' non-determinism). However, non-determinism
can be considerably reduced by the following
condition imposed on normal proofs. Let`s partition
arbitrarily the atomic formulae into two dual disjoint
classes: positive atoms X and negative atoms X┴. In
a normal proof, when a critical focusing section
reaches a negative atom, then the inference rule of
Identity (id) have to be applied. This condition
reduces the amount of non-determinism involved in
the critical sections.

3. OPTIMAL PROOF SEARCH USING

STOCHASTIC PROGRAMMING

In this section we apply stochastic programming
to determine the optimal strategy for linear logic
proof search. We can use Markov decision process
(MDP) because it models decision making in
situations where results are partly random and partly
influenced by the decision maker. This holds in
linear logic proof construction where we can
sometimes force the way of building the proof but in
the non-deterministic cases as ⊕ and ⊗, we have no
permission to select one of some possible ways to
continue. Therefore we assign probabilities to these
actions, which represent the rules, which we can
apply in each stage of the proof construction and we
compute the most probable strategy by value
iteration method.

A stochastic process, or sometimes random
process, is the counterpart of a deterministic process
(or deterministic system) considered in probability
theory. Instead of dealing only with one possible
“reality” of how the process might evolve under
time, in a random process there is some
indeterminacy in its future evolution described by
probability distributions. This means that even if the
initial condition (or starting point) is known, there
are more possibilities the process might go to, but
some paths are more probable and others less.

In the case of discrete time, a stochastic process
amounts to a sequence of random variables known
as a time series (for example Markov chain). In
probability theory, a stochastic process has the
Markov property if the conditional probability
distribution of future states of the process, given the
present state and all past states, depends only upon
the present state and not on any past states, i.e. it is

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

conditionally independent of the past states (the path
of the process) given the present state. A process
with the Markov property is usually called a Markov
process.

Markov decision processes (MDPs) provide a
mathematical framework for modelling decision-
making in situations where outcomes are partly
random and partly under the control of the decision
maker. MDPs are useful for studying a wide range
of optimization problems solved via dynamic
programming.

Stochastic programming [9] is a framework for
modeling optimization problems that involve
uncertainty. Its models are similar in style but take
advantage of the fact that probability distributions
governing the data are known or can be estimated.
The goal here is to find some strategy that is feasible
for all (or almost all) the possible data instances and
maximizes the expectation of some function of the
decisions and the random variables. More generally,
such models are formulated, solved analytically or
numerically, and analyzed in order to provide useful
information to a decision-maker.

3.1. Markov Decision Process

Consider a system being observed over a finite or
infinite time horizon split up into periods or stages.
At each stage, the state of the system is observed,
and a decision (or an action) concerning the system
has to be made. The decision influences
(deterministically or stochastically) the state to be
observed at the next stage, and depending on the
state and the decision made, an immediate reward is
gained. The expected total rewards from the present
stage until the end of the planning horizon is
expressed by a value function. The relation between
the value function at the present stage and the one at
the following stage is expressed by the functional
equation. Optimal decisions depending on stage and
state are determined backwards step by step as those
maximizing the right hand side of the functional
equation. This way of determining an optimal
strategy is based on the Bellman principle of
optimality which says: "An optimal strategy has the
property that whatever the initial state and initial
decision are, the remaining decisions must constitute
an optimal strategy with regard to the state resulting
from the first decision".

Markov Decision Process:

1. Definition: MDP is defined as a 4-tuple
 (S, A, TP, R):
• S is a finite set of states,
• A is a finite set of actions which permits the

transition between states. There is generally a
discrete number of actions.

• TP: S×A×S → <0,1> is a transition
probability which encodes the probabilistic
effects of actions; T (s, a, s') is the probability
to go from state s to state s', when action a is
performed.

• R: S → R is the reward function used to
specify the goal to reach and the dangerous
parts. R(s) gives the reward or penalty for
being in state s.

2. Optimal strategy: In MDP, we know at each
instant the current state. Actions must provide
all the information for predicting the next state.
Once the set of states S has been defined and the
goal state chosen, then an optimal strategy σ: S
→ A gives the optimal action to execute in each
state of S in order to reach the goal state(s)
(according to a given optimality criterion).

The two most important algorithms used to
calculate the optimal policy are: Value Iteration [3]
and Policy Iteration [8]. The Value Iteration
algorithm proceeds by little improvement at each
iteration and requires a lot of iterations. Policy
Iteration however, yields greater improvement at
each iteration and accordingly needs fewer
iterations, but each iteration is very expensive.

3.2. Optimal Proof Tree Planning Method

We specify MDPs approach in our case of
searching for an optimal proof in linear sequent
calculus.

1. Definition: of (S, A, TP, R):

• S = {s1, s2,…, sn} where every state is
associated to the set of sequents at each stage.

• A = {{ai}, {ai1, ai2,…, ai1},…, {ai1, ai2,…, aik}}
where i is the number of rules required for the
proof construction, and each action represents
rules which we can apply for sequents at each
stage.

• The transition probability remains the same
as defined, i.e. TP: S×A×S → <0,1> where

a
ijp is the probability to go from state si to

state sj, when action a is performed.
• We modify the reward function R: S×A → R

where a
ir gives the reward for being in state

si and performing action a.

2. Optimal strategy: An optimal strategy σ: S → A
gives the optimal action to execute in each state
of S in order to reach the goal state(s).

∀ si ∈ S: σ(si) ∈ A

3.3. Value Iteration Method

Under finite planning horizon the value iteration
method is excellent. The optimal strategy is
determined sequentially using the functional
equations [10]:

)(nfi =
a

max
⎭
⎬
⎫

⎩
⎨
⎧

−+∑
=

)1(
1

nfpr j

u

i

a
ij

a
i , (1)

ui ,,2,1 Κ=

4 On Optimizing Proof Search in Linear Logic by Value Iteration Method

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

where the action a maximizes the right hand side,
which is optimal for the state si at the stage n. The
function)(nfi is the total expected rewards from
the process when it starts from state si and will
operate for n stages before termination. Thus)0(if
is the salvage value of the system when it is in state
si. At each stage an optimal strategy is chosen using
these functional equations.

An optimal strategy is one with maximum
expected value.

)(niσ =
a
maxarg

⎭
⎬
⎫

⎩
⎨
⎧

−+∑
=

)1(
1

nfpr j

u

i

a
ij

a
i , (2)

ui ,,2,1 Κ=

In this equation in each stage we choose the

action which maximizes the function.

4. APPLICATION OF THE VALUE

ITERATION METHOD

Suppose we have a sequent ├ a ⊗ b, a┴ ℘ b┴.
We construct the proof trees by Andreoli’s proof
normalisation. We want to decide which one is
optimal. We use the above mentioned value iteration
method to compute the optimal strategy.

Possible proof trees look like that on Fig. 1:

Fig. 1 Proof trees obtained by proof normalisation.

There are n2 ways of partitioning the context
a┴ , b┴ in the case of the sequent ├ a ⊗ b, a┴ , b┴.
Hence we got four proof trees. We have to decide,
which of these are optimal in the sense that every
leaf is an axiom.

Therefore we apply MDP to these proof trees to
compute the optimal strategy. The set of states,
actions, the reward function and transition
probability function are described below.

S = {s1, s2, s3, s4, s5, s6, s7}
A = {a1, a2, a3}
where a1 = {⊗}, a2 = {℘}, a3 = {id, id}

The reward function defines for all states the

most suitable action to perform and the probabilities
of the transition from one state to another are
determined by the chance of realizing the defined
transition under a given action.

Fig. 2 The set of states and the reward function.

Fig. 3 The probability function.

In this example we are proceeding by the
following algorithm:

Procedure: value iteration (TP, R)
Inputs: TP is transition probability specifying a

ijp

R is a reward function a
ir

Outputs: σ [s] is an optimal strategy
 f [s] is a value function

for s∀ do
 0][0 =sf ; 0][=sσ
end for
for nkk ≤= ,1 do

for s∀ do

⎭
⎬
⎫

⎩
⎨
⎧

+= −
=
∑][max][1

1
jk

u

i

a

jss
a

sak sfprsf

end for
end for

for s∀ do

⎭
⎬
⎫

⎩
⎨
⎧

+= −
=
∑][maxarg][1

1
jk

u

i

a

jss
a

s
a

sfprsσ

end for
return σ,kf

For the initial state 1s the functional equation is:

3,2,1;)2(max)3(
5

1
111

=∀
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+= ∑
=

ifprf
js

j

ia
j

ia
s

ias

00)3(:
11 +=sfa

15)2(*15)3(:
212 =+= ss ffa

00)3(:
13 +=sfa

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

It is a recursive function which values are calculated
by the functional equations (1) and these values are
presented in the table below.
The optimal strategy for the initial state 1s is
computed by the equation (2) as follows:

3,2,1;)2(maxarg)(
5

1
111 =∀

⎭
⎬
⎫

⎩
⎨
⎧

+= ∑
=

ifprs
js

i

ia
j

ia
s

ia
σ

10)(1 =sσ

The total expected rewards and the optimal
strategy are presented in the following tables

Fig. 3 Total rewards and the optimal strategy.

In this way we got the optimal strategy for the
proof construction, i.e. for all states we get the set of
actions which maximize the total expected rewards.

5. CONCLUSION

In our contribution we proposed a stochastic
programming method (value iteration method) in
linear logic proof construction. This new approach is
used mainly in the case, when a "don‘t know" non-
determinism occurs. In the case of such a non-
determinism the branch of a proof tree is chosen
only with a certain probability. We used Markov
decision process because it models decision making
in situations where the results are partly random and
partly influenced by the decision maker. It is similar
to linear logic proof construction, where in some
cases we can force the way of building the proof but
in non-deterministic case like ''⊕ '' we have no
permission to select one of the two possible ways to
continue. Also in the case of the synchronous
connective ''⊗'' many possible instances of the
appropriate inference rule can be applied,
corresponding to different partitions of the context
along two branches.

We presented by a concrete example for the
above mentioned connective ⊗ finding the most
probable paths in searching for the proof of a given
linear sequent. In one part of the proof search we
applied Andreoli’s proof normalisation. It was in the
case of the selection of a principal formula. In such
a way we have build the possible proof trees. Then
we investigated asynchronous formulas. We
assigned probabilities to actions representing
inference rules of linear sequent calculus and we

have computed the most probable strategy for
building correct proofs by maximizing the expected
reward of functional equations using the algorithm
of the Value Iteration Method.

REFERENCES

[1] Alexiev V. : Applications of Linear Logic to

Computation. Bulletin of the IGPL, vol. 2, No.
1, 1994, pp. 77-107.

[2] Andreoli J. M. : Logic programming with
focusing proofs in linear logic. Journal of Logic
and Computation, vol. 2, No. 3, 1992, pp. 297-
347.

[3] Bellman R., Holland J.,Kalaba R. :: On an
Application of Dynamic Programming to the
Synthesis of Logical Systems. ACM Press 4,
1959, vol. 6.

[4] Galmiche, D., Perrier, G. : A procedure for
automatic proof nets construction. Springer-
Verlag LNAI 624, 135, 1992, pp.42-53.

[5] Galmiche, D., Perrier, G. : Foundations of
Proof Search Strategies Design in Linear Logic.
Logical Foundations of Computer Science
({LFCS}'94), No. 813, 135, 1994, pp.101-113.

[6] Girard. J.-Y. : On the meaning of logical rules I
: syntax vs. semantics. Note CRAS Paris,
January 1998, pp.1-45.

[7] Girard, J.-Y., Lafont Y., Taylor, P. : Proofs and
Types, Cambridge Tracts in Theoretical
Computer Science 7, Cambridge University
Press, 1988

[8] Howard. R. A. : Dynamic Programming and
Markov Processes. Cambridge, Massachussets,
U.S.A.: MIT Press, 1960.

[9] Kall P., Wallace S. W. : Stochastic
programming. John Wiley & Sons, New York,
second edition, 2003.

[10] Kristensen, A. : Dynamic programming and
Markov decision processes. Dina Notat No. 49,
1996.

[11] Lincoln P.,Shankar N. : Proof search in first-
order linear logic and other cut-free sequent
calculi. Proceedings of the Ninth Annual IEEE
Symp. on Logic in Computer Science, 1994,
pp.282-291.

[12] Tejfel M., Horváth Z., Kozsik T. : Temporal
properties of functional programs proven in
Sparkle-T. Z. Horváth (Ed.) Central European
Functional Programming School (The First
Central European Summer School, CEFP 2005,
Budapest, Hungary, July 4--15, 2005), Revised
Selected Lectures. LNCS 4161. Springer-
Verlag, 2006, pp.168-190.

[13] Verbová A., Novitzká V., Slodičák V. : From
Linear Sequent Calculus to Proof Nets.
Informatics'07, Bratislava, 2007, pp.100-107.

This work was supported by VEGA Grant
No.1/2181/05: Mathematical Theory of
Programming and Its Application in the Methods of
Stochastic Programming

6 On Optimizing Proof Search in Linear Logic by Value Iteration Method

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

BIOGRAPHIES

Valerie Novitzká defended her PhD Thesis: On
semantics of specification languages at Hungarian
Academy of Sciences in 1989. She works at
Department of Computers and Informatics from
1998, firstly as Assistent Professor, from 2004 as
Associated Professor. Her research areas covers
category theory, categorical logic, type theory,
classical and linear logic and theoretical foundations
of program development.

Anita Verbová was born on 15.09.1982. In 2006
she graduated (Ing.) at the department of Computers
and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University
in Košice. She is working on her PhD. degree at the
DCI FEEI, Technical university of Košice, Slovakia.
Her scientific research is focusing on interaction
categories, which are one form of representation of
parallel processes. In addition, she also investigates
questions related with proof search in linear sequent
calculus.

