
Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

ADAPTIVENESS OF SOFTWARE SYSTEMS USING REFLECTION

Ján KOLLÁR, Michal FORGÁČ, Jaroslav PORUBÄN
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice,
E-mail: Jan.Kollar@tuke.sk, Michal.Forgac@tuke.sk, Jaroslav.Poruban@tuke.sk

SUMMARY
This paper deals with basic principles of metaprogramming and reflection with connection to aspect-oriented

programming (AOP). Metaprogramming is about writing programs that represents and manipulate other programs or
themselves, i.e. metaprograms are programs about programs. The impact of metaprogramming is obvious in traditional
development processes, by sorting existing programs as transformational processes with inputs and outputs. Open
implementation and metalevel architectures are related to their reflective properties. Reflection is an entity’s integral ability
to represent, operate on and otherwise deal with itself in the same way that it represents, operates on, and deal with its
primary subject matter. Structural reflection represents the ability of a program to access a representation of its structure, as
it is defined in the programming language. Behavioural reflection represents the ability of a program to access a dynamic
representation of itself, that is to say, of the operational execution of the program as it is defined by the programming
language implementation (processor). AOP allows development of required application using principle of separation of
concerns. Reflection and AOP share many similarities in concepts, possibilities and applied techniques. There are several
solutions to provide a reflective system among which belong following approaches: MetaclassTalk, Geppetto Reflex and
Iguana/J. The former two are systems based on Smalltalk - Squeak; the latter two are based on Java.

Keywords: complex software systems, open implementations, metaprogramming, reflection, aspect-oriented programming

1. INTRODUCTION

There are many ways how to create complex
software systems. According to the area of software
engineering there are five general steps: collecting
requirements, assignment of specification, design,
implementation and evolution. When software
developers create an initial version of a software
application, which includes all requirements in this
time needed, they do not have knowledge about
future requirements. The new addition, change or
removal of functionality requires additional costs. In
fact, changes needed to satisfy new requirements
take several times longer than initial design and
realization. In order to have evolution of created
complex system affordable efficiency it is important
to use appropriate methods for effective evolution
which depend on previous steps and also adequate
environment for running complex system.

Implementation of complex systems can be
expressed in two ways: black-box abstraction or
open implementation [18]. Black-box represents
solution in which desired module of a system can
expose its functionality but its implementation is
hidden. Open implementation allows changing or
altering parts of the underlying software to enable
required needs.

Efficiency of creation and maintenance of
complex systems is influenced also according to
used implementation languages. Sometimes only
one general-purpose programming language is
sufficient.

But in any cases there is useful to exploit one or
more domain-specific languages, because they are
designated for specific kind of tasks.

This work was supported by VEGA Grant No.
1/4073/07 Aspect-oriented Evolution of Complex
Software Systems.

Aspect-oriented programming [5, 7, 10, 17]
supports means for separation of crosscutting
concerns. Base functionality can be expressed by
some base-level language and crosscutting concerns
can be expressed by one or more domain-specific
languages. Weaving [7, 10] is utilized after proposal
of individual parts. Computer system has to be
located in environment, which enable run-time
changes. We are thinking that adaptiveness can be
achieved also using adaptive aspect-oriented
language [8]. Run-time adaptability of aspect-
oriented language can be one of the solutions which
can help in software evolution [4, 9, 11], but there
are some obstacles to easy creation of this solution.
Therefore, when somebody is creating complex
system, it has to pass through many implementation
points. Employed language or more languages
should be minimal and strongly associated with the
properties of the software system in any point of its
implementation [8], thus there is the need to change
language when it is useful.

This paper is structured as follows: basic
information about metaprogramming and groups of
programs which can be considered according to
utilization of metaprogramming are presented in
section 2. Section 3 deals with main principles of
reflection and utilization of reflection in aspect-
oriented programming. Section 4 presents some
practical reflective solutions. Finally, section 5
presents conclusion of this paper.

2. METAPROGRAMMING

Metaprogramming is about writing programs that
represents and manipulate other programs or
themselves, i.e. metaprograms are programs about
programs [3]. The impact of metaprogramming is
obvious in traditional development processes, by

2 Adaptiveness of Software Systems Using Reflection

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

sorting existing programs as transformational
processes with inputs and outputs. According to [15]
there are some groups of programs which can be
considered according to utilization of
metaprogramming. The notation n p means, that n
is the sort of programs of whose inputs are code, and
p is the sort of programs of whose outputs are also
code. These groups are as follows:

• 0 0: doesn’t take or return code (non-
meta program).

• 1 0: takes one piece of input code,
doesn’t output code (interpreter, code
analyzer).

• 0 1: outputs code without inputting any
(data precompiler, generator).

• 1 1: takes one input program, outputs
one back (compiler)

• 2 0: takes two programs as input, doesn’t
output code (metainterpreter).

• 2 1: takes two input program, returns one
program (metacompiler).

• 1 2: takes one program as input, returns
two (phase splitter).

For adaptive systems, the most interesting groups
are 2 0 and 2 1. But in general, inputs may
represent more than two programs. These programs
can be expressed not only in any general-purpose
programming language but also in various domain
specific languages. Thus these groups can be
generalized and written as:

• n 0: takes n programs as input (n>1),
doesn’t output code (metainterpreter).

• n 1: takes n input programs (n>1),
returns one program (metacompiler).

Another important issue is temporal facet, because
in case of metainterpreters, individual input
programs can be inserted and processed at arbitrary
time. Typical examples are interpreters which
support run-time weaving [9]. Thus input programs
can alter behaviour of interpreted functionality.

3. REFLECTION

Open implementation and metalevel
architectures are related to their reflective properties.
Reflection is an entity’s integral ability to represent,
operate on and otherwise deal with itself in the same
way that it represents, operates on, and deals with its
primary subject matter [3]. A metalevel provides
information about selected system and makes the
software self-aware. A base level includes the
application logic.

In general, in any reflective system, the meta-
level control over the base level takes place in two
steps [12]:

• The base object (in case of object-oriented
programming) calls the metaobject

requesting a change in terms of semantics.
This is called the reification of one
implementation or semantic aspect.

• After this is done, the flow of control

returns from the metaobject back to the
base object. Because the metaobject
modified a part of the base object, its
behaviour or representation is now
changed. This process is also called
reflecting the changes back into the base
object.

The reification operation (Fig. 1) then consists in

expliciting some base concepts or mechanisms that
are usually transparent for the programmer. Those
reified concepts or mechanisms are usually
implemented in some metaobjects (at the metalevel).
In a functional point of view, the reification process
occurs when the base level gives hand to the
metalevel.

The reflection operation (Fig. 1) consists in
modifying the base level interpretation to change the
base level objects semantics. In a functional point of
view, the reflection process occurs when the
metalevel processes some extra computing and gives
back the hand to the base level.

Fig. 1 The reification and reflection operation.

Thus reflection in wider meaning consists of
reflection point of view and reification point of
view. In the text below we will mean under
reflection both views together.

Reflection can be divided into two groups:
structural and behavioural reflection [18]:

Structural reflection represents the ability of a
program to access a representation of its structure, as
it is defined in the programming language. For
instance, in an object-oriented language, structural
reflection gives access to the classes in the program
as well as their defined members.

Behavioural reflection represents the ability of a
program to access a dynamic representation of itself,
that is to say, of the operational execution of the
program as it is defined by the programming

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

language implementation (processor). In an object-
oriented language, behavioural reflection could for
instance give access to base-level operations such as
method calls, field accesses, as well as the state of
the execution stack of the various threads in the
program.

3.1. Reflection for interpreted and compiled

languages

A programming language is said to be reflective
if it provides an explicit representation (i.e.,
reification) of entities that either represent program
building blocks (e.g., classes, methods) or are
involved in program execution (e.g., stack, garbage
collector) [18]. Developers thus can define system
(software) functionalities and also new program
building blocks or execution mechanisms (how
functionalities will be performed). Using reflection
and metaobject protocol [1] ist the most appropriate
for interpreted languages. An interpreter is the ideal
place for metalevel information about running
program. This support is not present in two
situations:

• for compiled languages, where source code
is turned into code directly executed by the
machine, since there is no interpreter (such
as C++),

• for interpreter languages whose standard
interpreter is non-reflective and hardly
extensible or modifiable (like Java virtual
machines).

When there is the need to add support for

reflection into non-reflective compiled language, it
is necessary to keep metalevel information beyond
the compilation process and perform transformation
of source code with appropriate links to the
metalevel information. This proposal can be
supported through so-called hooks, which have to be
introduced into transformed code. Hooks are pieces
of code and allow the reification process, because
they trigger shift to the metalevel when they are
reached by the execution flow. Metalevel consist of
behaviour, which can be accessed and changed
dynamically. But significant disadvantage is
significant execution overhead, if hooks are used at
each and every place in the code, because program
must evaluate both the hooks and the metalevel
code. This problem solves partial reflection [18],
which uses limited set of hooks.

In the case of languages, for which only
interpreter without reflective support is available,
there are two options. The first one is to add the
interception and redirection mechanisms in the
source or binary code, similarly as in the case of
compiled languages. Thus interpreter will be without
changes, but similar major disadvantage
performance overhead remains. The second option
represents advantage of direct access to internal
structure of interpreter and thus it supports greater
flexibility and expressiveness for supporting

dynamic adaptation. The major disadvantages are
the loss of compatibility with standard environments
and the complexity of the implementations.

3.2. Aspect-oriented programming using

reflection

Aspect-oriented programming [5, 7, 10, 17]
allows development of required application using
principle of separation of concerns. Reflection and
AOP share many similarities in concepts,
possibilities and applied techniques [1].

A concern is a particular goal, concept, or area of
interest; it means that it is in substance semantical
concern. From the structural point of view a concern
may appear in source code as a component or as an
aspect [7]. A component is cleanly encapsulated in
building block of the programming language; it is
structurally compact (core) concern. Aspect is a
property which crosscuts components and tends to
affect components performance and semantics.
Using reflection, aspect code is separated from base
code using the natural separation between the base
level and the metalevel. Base code is defined at the
base level, while aspects are defined at the
metalevel. Base objects represent base code, and
metaobjects represent aspects. Separating aspect
definitions one from another is done by making use
of a specific set of metaobjects for each aspect. [1].

Separated crosscutting concerns in traditional
AOP are mutually woven with components through
weaving process, which can be performed during
compile-time, load-time or run-time. Our interest is
mainly in run-time weaving. Using reflection, run-
time weaving can be performed using the meta-link
and meta-object cooperation. Aspects are thus
woven with base code using the meta-link.

4. EXISTING REFLECTIVE SOLUTIONS

There are several different solutions to provide a
reflective system. In the following list, the former
two approaches are systems based on Smalltalk –
Squeak; the latter two are based on Java. Squeak is
open source full-featured implementation of
Smalltalk programming language and environment
[2, 16].

MetaclassTalk [2] represents a reflective
extension of Smalltalk language for simplifying
experiments with new programming paradigms (e.g.
aspect-oriented programming). Smalltalk language
[6] by itself supports reflective facilities, thus it can
be understood as independent reflective solution
(such as Smalltalk-80 in [16]). Although Smalltalk
has many reflective facilities, they provide little help
for changing the execution mechanisms. Last
version of MetaclassTalk does not extend the virtual
machine of Squeak in order to provide advanced
reflective functionality, but it is established on
extending of the compiler. MetaclassTalk thus
requires the source code to introduce its reflective
capabilities into the system. This solution is portable
between different Squeak images.

4 Adaptiveness of Software Systems Using Reflection

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Geppeto [16] is based on Squeak and works on
principle of insertion hooks into bytecode of
methods. Hooks are placed in every method, where
we want to reify required operations. Hook insertion
can occur at any time in any method of any class in
the whole running system, even in system classes.
This solution allows portability, because it doesn’t
modify virtual machine.

Reflex [18] is open reflective system for Java. It
is based on insertion of hooks into bytecode thus it
does not modify Java virtual machine, only
transforms bytecode. Hooks reify information about
a base level operation and pass this information to
the metalevel. But hooks are inserted only at load-
time, because Java platform has technical limitations
and thus only anticipated reflection is possible. This
solution is portable, because it does not modify Java
virtual machine.

Iguana/J [14] is also reflective framework for
Java. It is based on bytecode transformation and it
requires adapted and extended Java virtual machine.
This proposal modifies the interpreter by making use
of JIT compiler interface. This solution is not
portable, but it supports unanticipated reflection.

5. CONCLUSION

In this paper we have presented basic principles
of metaprogramming and reflection with connection
to aspect-oriented programming. We have
mentioned about groups of programs, which can be
considered according to utilization of
metaprogramming and we have generalized this
overview with respect to utilization of various inputs
languages in metainterpreters and metacompilers.
We have also summarized information about
existing reflective solutions.

Our current research concentrates on how a
language (not a program) can vary its semantics,
reflecting not just compile time, as it is in [13] but
also runtime events. This work have brought
theoretical basis about concept of metaprogramming
and reflection, which we have recognised as
fundamental.

REFERENCES

[1] Bouraqadi, N., Ledoux T.: Aspect-oriented

programming using reflection. Technical
Report 2002-10-3, Ecole des Mines de Douai,
October 2002.

[2] Bouraqadi, N.: Concern Oriented Programming
using Reflection. In Workshop on Advanced
Separation of Concerns – OOSPLA 2000,
2000.

[3] Czarnecki, K., Eisenecker, U.: Generative
Programming: Methods, Tools, and
Applications. Addison Wesley (2005), 832 pp.

[4] Ebraert, P., Tourwe, T.: A Reflective Approach
to Dynamic Software Evolution, Proceedings of
the Workshop on Reflection, AOP and Meta-
Data for Software Evolution(RAM-SE'04), 15th
of June 2004, Oslo Norway, 2004, pp. 37-43.

[5] Filman, R.: Friedman, D.: Aspect-oriented
programming is quantification and
obliviousness, Workshop on Advanced
Separation of Concerns (OOPSLA 2000),
October 2000.

[6] Goldberg, A., Robson, D.: Smalltalk-80: The
Language. Addison Wesley, 1989.

[7] Kiczales, G., et al.: Aspect-Oriented
Programming. 11th European Conf. on Object-
Oriented Programming, volume 1241 of LNCS,
Springer Verlag, 1997, pp. 220-242.

[8] Kollár Ján, Porubän Jaroslav, Václavík Peter,
Bandáková Jana, Forgáč Michal: Adaptive
Language Approach to Software Systems
Evolution, International Multiconference on
Computer Science and Information
Technology: 1st Workshop on Advances in
Programming Languages (WAPL'07), Wisla,
Poland, October 15-17, Polish Information
Processing Society, 2007, 2, pp. 1081-1091,
ISSN 1896-7094 .

[9] Lehman, M., Ramil, J.: Towards a theory of
software evolution - and its practical impact.
Proceedings of the International Symposium on
Principles of Software Evolution, Nov. 2000,
Japan, pp. 2-11.

[10] Nicoara, A., Alonso, G.: Dynamic AOP with
PROSE. In: Proceedings of International
Workshop on Adaptive and Self-Managing
Enterprise Applications (ASMEA 2005) in
conjunction with the 17th Conference on
Advanced Information Systems Engineering
(CAISE 2005), Porto, Portugal, June 2005.

[11] Oriol, M.: An Approach to the Dynamic
Evolution of Software Systems, Ph.D. Thesis,
University of Geneva, Geneva, Switzerland,
April 2004.

[12] Pawlak, R.: Metaobject Protocols For
Distributed Programming. Technical report,
Laboratoire CNAM-CEDRIC, Paris, 1998.

[13] Rebernak, D., Mernik, M. Rangel H. P., and
Pereire M.J.V.. Aspectlisa: an aspect-oriented
compiler construction system based on attribute
grammars. In LDTA’06: 6th Workshop on
Language Descriptions, Tools and
Applications, Vienna, AT 2006.

[14] Redmond, B., Cahill, V.: Supporting
Unanticipated Dynamic Adaptation of
Application Behaviour. In Proceedings of
European Conference on Object-Oriented
Programming, volume 2374, Springer-Verlag,
2002, pp. 205–230.

[15] Rideau, F.: Metaprogramming and Free
Availability of Sources, Two Challenges for
Computing Today, CNET DTL/ASR, 1999.

[16] Röthlisberger, D.: Geppetto: Enhancing
Smalltalk’s Reflective Capabilities with
Unanticipated Reflection, PhD thesis,
University of Bern, December 2005.

[17] Steimann, F.: The paradoxical success of
aspect-oriented programming, in: OOPSLA '06,
Portland, Oregon, USA, 2006, pp. 481–497

Acta Electrotechnica et Informatica No. 3, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

[18] Tanter, E.: From Metaobject Protocols to
Versatile Kernels for Aspect-Oriented
Programming PhD thesis, University of Nantes,
France, and University of Chile, Chile.
November 2004.

BIOGRAPHIES

Ján Kollár was born in 1954. He received his MSc.
summa cum laude in 1978 and his PhD. in
Computing Science in 1991. In 1978-1981, he was
with the Institute of Electrical Machines in Košice.
In 1982-1991, he was with the Institute of Computer
Science at the University of P.J. Šafárik in Košice.
Since 1992, he is with the Department of Computers
and Informatics at the Technical University of
Košice. In 1985, he spent 3 months in the Joint
Institute of Nuclear Research in Dubna, Soviet
Union. In 1990, he spent 2 month at the Department
of Computer Science at Reading University, Great
Britain. He was involved in the research projects
dealing with the real-time systems, the design of
(micro) programming languages, image processing
and remote sensing, the dataflow systems, and the

implementation of functional programming
languages. Currently the subject of his research are
adaptive languages and software systems.

Michal Forgáč was born in 1983. In 2006 he
graduated at Technical university of Košice. He is
working on his PhD. degree at the Department of
Computers and Informatics FEEI, Technical
university of Košice. His scientific research is
focusing on the aspect oriented programming
paradigm, software evolution and adaptiveness of
complex software systems.

Jaroslav Porubän was born in 1977. He received
his MSc. summa cum laude in 2000 and his PhD. in
Computing Science in 2004. Since 2003 he is with
the Department of Computers and Informatics at
Technical University of Košice. He was involved in
the research projects dealing with implementation of
functional programming languages and parallel
programming. Currently the subject of his research
is the application of process functional paradigm in
aspect oriented programming and program profiling
systems.

