
Acta Electrotechnica et Informatica No. 4, Vol. 6, 2006 1

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

TYPE ENVIRONMENTS IN OBJECT ORIENTED PROCESS FUNCTIONAL
LANGUAGE

Peter VÁCLAVÍK, Jaroslav PORUBÄN *
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 095/602 3175,
E-mail: Peter.Vaclavik@tuke.sk, Jaroslav.Poruban@tuke.sk

SUMMARY
The state of a system is expressed using PFL, a process functional language, in an easily understandable manner. The

paper presents PFL environment variable - our basic concept of the state manipulation in the process functional language.
The concept of the process functional language has been extended with an object-oriented paradigm features. The paper
presents an abstract syntax of the object-oriented PFL and describes the syntax of types and type environments. In the paper
main ideas of object-oriented PFL type checking and program translation in a compiler are explained. Finally the paper
presents an example where type environments are inferred as a result of PFL program translation. Presented results
described in this paper were implemented in PFL compiler.

Keywords: process functional language, object-oriented functional programming, type environment, type unification

* This work was supported by VEGA Grant No. 1/1065/04 - Specification and implementation of aspects in

programming.

1. INDRODUCTION

Object-oriented concepts are ubiquitous in
programming. Objects may model real life entities,
or may represent system artifacts like stacks. Objects
provide a way to structure a system and to control
the computation. One of the characteristics of
object-oriented programming is inheritance, which
allows new classes to be defined as increments of
existing ones. Inheritance comes with dynamic
binding, inclusion polymorphism (subtyping) and
method overriding.

In a functional language, a programmer declares
referential transparent functions. Whenever a
function is called, it returns the same result for the
same arguments. Thus, functional programming
languages allow for elegant reasoning. Furthermore,
functional languages support specification and
programming at a rather high level using type
inference, parametric polymorphisms, high-order
functions, lazy evaluation and algebraic data type.

PFL, an experimental process functional
language [5], is somewhere between imperative and
pure functional languages, since the variable
environment is visible to a user, and the source
definitions of processes are purely functional, i.e.
without assignments and without environment
variables. This supports, as we believe, the
simplification of the systems design and, at the same
time, the simpler reasoning about the systems. From
the viewpoint of implementation, PFL is somewhere
between an impure eager functional language and a
monadic lazy pure functional language. It is because
the different binding of variable environment to PFL
processes than that can be found in impure

languages. So, the state of a system is expressed
using PFL in an easily understandable manner.
Coming out from monad and state transformers
theory we define our concept of PFL variable
environment.

The research of languages that combines
functional and object-oriented features has a long
history. The aim is to integrate the formal methods
benefits of functional programming, comfort to a
programmer given by higher level of abstraction
with the software engineering benefits of both
paradigms.

The approaches to integrate both paradigms can
be divided into two categories. The first category
comprises effort to extend functional language with
object-oriented features [2,4,7]. The second one
covers efforts to extend imperative object-oriented
language with functional features such as higher-
order functions, algebraic data types and parametric
polymorphism [8,9].

In the section 0 we present basic approach to
object-oriented programming in a process functional
language. Nowadays the process functional language
combines imperative, functional and object-oriented
paradigms of programming. Process functional
language has been extended to object-oriented
language in a past few years and two compilers have
been already implemented that compiles process
functional code to Java and Haskell language.

In the section 0 the types and type environments
of a PFL program translation are described. Even
though there is solution for PFL presented the one is
applicable in other programming languages as well.
This approach was inspired with Haskell. Short
example concludes the section.

2 Type Environments in Object Oriented Process Functional Language

2. THE CURRENT STATE IN OBJECT

ORIENTED PFL RESEARCH

PFL is an extended subset of Haskell
programming language. It is strongly typed
functional language supporting pattern matching,
local and global function definitions, algebraic and
abstract data types, primitive function definitions,
operator definitions, global and local variable
environments.

PFL type system comprises unit type () as it is
in Haskell. This type comprises just control value,
representing the control. It means for example, that
it is impossible to mix data and control arguments
for constructors of algebraic data types.
Let T be a data type. Then the type

()~
∪= TT

ranges over a data type and unit type. The PFL
process is similar to a function. Definition of a PFL
process is same as a definition of a pure function.
The only difference is in its type definition. Type
definitions for processes are obligatory. The type
definition of a process extends a syntax and
semantics of a pure function type definition. The
type definition of a process comprises either () for
an argument or the value type, or an argument type
in the form v T, where v is an environment variable
and T is a data type. Examples of processes type
definitions are provided later. The idea of
incorporating of some aspects in function type
definitions is also presented in Clean with its
uniqueness attributes [10].

Functions are first-class values in PFL. On the
other hand processes are not. Process cannot be
passed as an argument to a function or returned as
the result of a function. There is no partial process
application. This approach has been chosen to
simplify identification of program parts
manipulating the state. The PFL static analyzer finds
parts of a program affected by the state - processes.

The well-known and commonly accepted
concept of the variable environment in both
imperative and impure functional languages is as
follows. The variable environment Env is a mapping
from variables to their values. If βαρ →::
is environment and α∈a , β∈b , then the update
expression is as follows.

Symbol ∅ is used to define empty environment.

The variable environment Env is defined using
the update expression.

Env = Var → Value
access :: Var → Env → Value
access x e = e x
update :: Var → Value → Env → Env
update x v e = e [x 6 v]

In the type definition of Env, Var is a domain of
environment variables and Value denotes a
disjunctive unification of all PFL data types values.

A syntactic form of a variable attributed type v T
as an argument type of a process allows a user to
consider the visible variable environment in role of
input memory gate of process bodies, consisting of a
subset of environment variables - memory cells that
are possibly shared by multiple definitions of
processes in the same scope.

The processes may be applied either to control
values, and computed using values accessed from
the environment variables, or to data values and
computed using them, updating the environment
variables by this value before.

Concluding, the state is defined by the
environment that internally conforms to that used in
imperative and impure functional languages, but for
the reasons of its binding to process bodies, the PFL
semantics is the same as the semantics of monadic
approach [6]. In PFL, the access and the update of
environment are uniform in each scope, by processes
defined in the same scope as the environment -
global, local or object one.

Let us suppose a simple PFL process sum
defined in a main scope, which has two environment
variables a and b defined in a process type
definition, as follows.

 sum :: a Int -> b Int -> Int
 sum x y = x + y

Suppose an application sum 3 4 exists somewhere
in an expression of a PFL program, such that sum is
accessible (for example in a definition of a process
in the main scope). Then the result of the application
will be updating the environment variables a by the
value 3, updating the environment variables b by the
value 4, as an additional side effect to the evaluation
of pure function. It means the value of the
application will be 7.

This is so because in the first stage of the
translation the definition above is transformed to the
form of pure function, as follows

 sum :: Int -> Int -> Int
 sum x y = x + y

while each application of sum is transformed to the
form, in which environment variable is applied to
corresponding argument. For example, sum 3 4 is
transformed to (sum (a 3) (b 4)).

⎪
⎩

⎪
⎨

⎧

∅=≠⊥
∅≠≠

=
=

ρ
ρρρ
 and if,
 and if,

 if,
])[(

ax
axx
axb

xba6

Acta Electrotechnica et Informatica No. 4, Vol. 6, 2006 3

Prog → CDecls IDecls Def main = exp Program
CDecls → CDecl CDecls
 | ε
CDecl → class nαακθ …1⇒ where { }m

iiif 1:: =ϕ Type class declaration (n ≥ 0)
IDecls → IDecl IDecls
 | ε
IDecl → instance nττκφ …1⇒ where { }m

iiif 1exp == Instance declaration (n ≥ 0)

Def → f exp Def
 | ε
exp → x Identifier
 | () Control value
 | χ exp1 ... expn Type constructor
 | κ exp1 ... expn Type class constructor
 | exp1 expn Application
 | λ x.exp Function abstraction
 | x⇒ exp Object application

Fig. 1 Abstract syntaxt of object-oriented PFL.

On the other hand, if original argument is the control
value (), then the transformed application may be
for example (sum (a ()) (b 5)), provided
that the source form is (sum () 5). Then the
value of y will be 5 (updating b by 5), and the value
of x will be the value accessed from environment
variable a by the application (a ()). Provided that
the value in a is 6, the value of (sum (a ()) (b
5)) will be 11. If no value has been assigned to a
before, then the value of the application is
undefined.

Since the access and update instances are applied
implicitly, i.e. they never occur in the process
definitions, the state change strongly depends on the
order in which the arguments of a process are
evaluated.

Object-oriented approach is based on extension
of abstract types known from pure functional
languages [11]. The PFL oriented-oriented
extensions are presented in the next example.

data Color = Red | Green | Blue
class Point where

pointX :: x Int -> Int
pointY :: y Int -> Int
moveX :: Int -> Int
moveY :: Int -> Int

class (Point) => CPoint where
 setColor :: c Color -> ()

 color :: c Color -> Color

instance Point where
pointX px = px
pointY py = py
moveX px = px + (pointX ())
moveX py = py + (pointY ())

instance CPoint where
setColor pc = ()
color pc = pc

There are defined two classes Point and CPoint
in the example. Classes are defined as monomorphic
type classes - it is possible to define only one
instance declaration. The class Point defines two
processes for direct manipulation of environment
variables (coordinates) x and y. Class CPoint
extends class Point. A function setNewX using
CPoint objects can be defined as follows.

 setNewX :: CPoint -> CPoint -> Int
 setNewX p1 p2 = p1 => moveX (
 p2 => pointX ())

Arguments p1 and p2 represent objects. Function
setNewX moves coordinate x of an object p1
relatively to new position defined by value of
coordinate x of an object p2.

3. TYPES AND TYPE ENVIRONMNETS

Type checking is one of the most important parts

of a program compiling. Usually the type checking
is done during compile time. It is important to
identify and infer types and create type
environments during early stages of type checking
for the later use when transformation rules are
selected and applied. PFL has defined set of types
(see section 0) and set of type environments (see
section 0). The result of a PFL the program
translation is presented on example focusing on
inferred type environments (see section 0).

4 Type Environments in Object Oriented Process Functional Language

τ → Tν
 | τ
 | ()
 | nττκ …1 (n ≥ 0)
 | ττ →'
τ → α
 | kττχ …1 (k ≥ 0,)(χarityk =)
 | ττ →'
T → nττκ …1 (n ≥ 0)
 | nττχ …1 (n ≥ 0)
ρ → τττκττκ ⇒m

r
m

r m
……… 11

11
11 ,,

1
 (m ≥ 0)

σ → τθαα ⇒∀ .1 l… (l ≥ 0)
ϕ → τφαα ⇒∀ .1 l… (l ≥ 0)

θ → m
r

m
r m

αακαακ ……… 11
11

11 ,,
1

 (m ≥ 0)

φ → m
r

m
r m

ττκττκ ……… 11
11

11 ,,
1

 (m ≥ 0)

γ → llm TTTT →→
~:,,~:,,, 11111 ννγγ …… (m ≥ 0, l ≥ 0)

T~ → T
 | ()

Fig. 2 Syntax of types.

3.1. PFL types

The abstract syntax of PFL program is defined
on the Fig. 1. Basic type definitions are denoted with
symbols φχϕακθ and ,,,, . The abstract syntax
contains rules:

• Abstract types declaration rules

- Type class declaration
- Instance declaration

• Object manipulation rules
- Object creation – application of a type

class constructor
- Object application – application of a

process or function in the context of
object

• Basic processing of expression rules

In the phase of source PFL program translation

the rules of static semantics are used. Types and type
environments are important parts of the translation
rules. The PFL type system is inspired with the type
system defined by Wadler and Blott [12]. Types
used in static semantic of object-oriented PFL are as
follows.

Environment variable ν is used only in type

expressions. It is main reason of comprising
environment variable in a set of types. Syntax of
types is shown on the Fig. 2. Application of type
rules is explained on next function type definition.

BooleanaaaOrdf →→⇒][)(::

This type definition is expressed with types defined
on the Fig. 2 as follows.

BooleanListOrdf →→⇒∀ αααα).(::

It is polymorphic type definition. It is possible to
write it in next form.

σ::f

T concrete type (algebraic type, class type)
T~ argument type
ν environment variable
τ basic type
τ pure basic type
θ type class context
φ instance context
ρ overloaded type
ϕ extended polymorphic type
σ polymorphic type
γ variable environment

α type variable
κ type class name
χ type constructor
() unit type

Acta Electrotechnica et Informatica No. 4, Vol. 6, 2006 5

Environment name Abbreviation Type
Type Variable Environment TVE { }α
Type Constructor Environment TCE { }k:χ
Type Class Environment CE { }PFEn ⇒∀ θαακ .: 1…
Class Variable Environment CVE { }γκ :

Local Class Variable Environment LCVE { }TT →
~:ν

Instance Environment IE { }nl ττκφαα …… 11 .: ⇒∀dpf
Identifier Environment IDE { }ϕ:var
Selection of Position Environment SPE { }i:sel
Process and Function Environment PFE { }ϕ:pf
Context of Process and Function Environment CPFE { }nττκ …1:dvar
Current Instance Type CIT { }nττκ …1:dvar
Context of Instance Environment CIE { }nττκ …1:dvar

Object Environment OE { }envdvar,: var

Environment of Variable Environment EVE { }exp: name
Names Environment NE { }name
Types Environment TE { }name
Environment E (TVE,TCE,CE,CVE,IE,IDE,SPE,CPFE,PFE)
Declarations Environment DE (CE,IE,IDE,CVE,SPE)

Fig. 3 Type Environments.

In this form of type definition the polymorphic type

τθασ ⇒∀= . where context αθ Ord= . Name
Ord is a class name and type variable α is a type
class parameter. Type τ consists of two type
constructors:

• List – type constructor of arity 1.
• Boolean – type constructor of arity 0.

Also, we could write polymorphic type in the form

ρασ .∀= . In this example type ϕσ = . Main
difference between them is in context type. Context
of extended polymorphic type ϕ comprises types in
the form nττκ …1 . It means that polymorphic type
σ is more general than type ϕ due to comprising
only type environment (ϕσ ⊆).

3.2. PFL type environments

In the phase of PFL program transformation the
type environments are created and applied. These
type environments comprise sufficient information
to verifying validity of type variables, type
constructors, class names and variable names in
types and expressions. Type environments are
shown on the Fig. 3. Names written in bold represent
names produced in the compile time. Type
environments are divided into next categories.

• Simple environment – does not comprise
other environment.

• Compound environment – consists of other
environments.

Environment ENV is defined as a mapping of name
into information (info) in next form.

{name : info}

This form describes environments except of TVE,
NE and TE where only name without mapping is
defined.
We have defined operators within type
environments. They are applied as a part of semantic
rules. These operators are divided into two
categories.

• Operator for selection of environment from
compound environment - of.

• Operators for combination of environments

- . and ,,, ENVENVENV

6
⊕⊕⊕⊕⊕

→→

Semantics of operator of is possible to explain on
next application IDE of E. Operator of selects
environment IDE from environment E. More
complex semantics is defined for operators of
environments combination. In first case the
operators over simple environments are considered -

→
⊕⊕, . They are defined as follows.

6 Type Environments in Object Oriented Process Functional Language

2121

21
212

1
1
11

22
12

11
11

21
212

1
1
11

22
12

11
11

2
2

1
2

2
1

1
1

2
2

2
1

1
2

1
1

213321

11

11

 if),()(
 if),()(

)()(
()()

 where,

TTTT
nnnn

nnnn

nn

nn

∪∪
∪…∪…∪…
∪…∪…∪…
∪∪∪

∪
∪

……∪
……∪

=
==
==

→=→→
=

∨==
=
=

νν
χχττττχττχττχ

κκττττκττκττκ
ττττττττ

α
αααααα

ττχττχα
ττκττκα

Fig. 4 Types unification rules.

simpleEnvsimpleEnvsimpleEnv

simpleEnvsimpleEnvsimpleEnv

→×⊕

→×⊕
→

::

::

Type simpleEnv represents simple environment.
Combination of two environments is written in next
form 21 IDEIDE ⊕ . Operator ⊕ combines items of
environment IDE1 and IDE2. The semantics is as
follows.

()

()
()
()

()⎪
⎪
⎩

⎪
⎪
⎨

⎧

∉∧
∈

∉∧
∈

=⊕

1

22

2

11

21 if,

if,

ENVdomvar
ENVdomvarvarENV

ENVdomvar
ENVdomvarvarENV

varENVENV

()
()
()⎪

⎩

⎪
⎨

⎧

∈
∉∧
∈

=⊕
→

22

2

11

21
if,

if,
)(

ENVdomvarvarENV
ENVdomvar
ENVdomvarvarENV

varENVENV

Expression ()1ENVdom represents domain of

environment ENV1. Operators ENVENV
→
⊕⊕ , and

ENV
6
⊕ combine simple environment simpleEnv and
compound environment compEnv as follows.

()

compEnvsimpleEnvcompEnv

compEnvsimpleEnvcompEnv

compEnvcompEnvsimpleEnvcompEnv

ENV

ENV

ENV

→×⊕

→×⊕

→∨×⊕
→

::

::

::

6

The semantics of the operators is defined as follows.

()
() ()
() ()
()

()()[]⎪
⎪
⎩

⎪
⎪
⎨

⎧

⊕
=⊕

⊕⊕
⊕⊕

=

⊕

otherwiseENVENVEofENVE
DEENVENVofSPE

ENVofCVEENVofIDE
ENVofIEENVofCEE

varENVENV

SPE

CVEIDE

IECE

ENV

,/'
' if,'

''
''

21

[]ENVENVEENVE

ENVENVEofENVEENVE

ENV

ENV

/''

]/)')[(('

=⊕

⊕=⊕
→→

6

The expression ()()[]ENVENVEofENVE /'⊕
define substitution of environment ENV as a
combination of environment ENV and 'ENV .
Semantics these operators are explained on short
examples as follows.

()"… ,,',,,' SPEIDEIDEIETVEIDEE IDE ⊕=⊕

The definition of compound environment E is
shown on the Fig. 3. As a result the environments
IDE and 'IDE are applied using operator ⊕ with
semantics defined above. It is similar in the case of

operator ENV
→
⊕ .

),,',,,(' "… SPEIDEIDEIETVEIDEE IDE
→→
⊕=⊕

The items of environment 'IDE with the same name
like in environment IDE are favoured. The

semantics of operator ENV
6
⊕ is a little bit different.

),,',,,(' "…
6

SPEIDEIETVEIDEE IDE =⊕

In the compound environment E the environment
IDE is replaced with environment 'IDE .

There are three implicit conditions defined over the
environments.

• The same variable var cannot be
comprised in two environments ENV1 and
ENV2 if the operator ⊕ is applied.

() () ∅=∩ 21 ENVdomENVdom

• The variable var must be comprised in the

environment ENV if the expression
var ENV is occurred.

dom(ENV)var ∈

• Only one instance of the same type has to
be declared for type class. If the expression

21 IEIE ⊕ is occurred, next condition is
true.

Acta Electrotechnica et Informatica No. 4, Vol. 6, 2006 7

=⊥∨∨=⊥∨≠

∈∀∧∈∀

j
r

i
r

ji
ji

j
r

j
j

i
r

i
i

ji

ji
IEIE

ττττκκ

ττκττκ

∪…∪

……

11

2111 :

The operator ∪ unifies two types (see Fig. 4). For
other cases the result of unification is equal ⊥ .

Example

Now we will consider example from section 0. The
type environments after the PFL program translation
are inferred as follows.

}0:Color{0 =TCE

}
}ColorColorc:

)(Colorc:
{Point:CPoint

}IntInt:
IntInt:

IntInty:
IntIntx:

{:Point
{0

→
→

⇒〉〈
→
→

→
→

⇒〈〉
=

color
setColor

moveY
moveX
pointY
pointX

CE

}PointCPoint:{0 ⇒〉〈= omCPointselPointFrIE

}
}ColorColorcCPoint:

)(ColorcCPoint:
}IntIntPoint:

IntIntPoint:
IntIntyPoint:
IntIntxPoint:

{

→⇒〉〈
→⇒〉〈

→⇒〉〈
→⇒〉〈

→⇒〉〈
→⇒〉〈

=

color
setColor
moveY
moveX
pointY
pointX

IDE

}
c,yx,:CPoint

yx,:Point
{

〉〉〈〈
〉〈

=CVE

}0:{ omCPointselPointFr=SPE

These environments have been obtained by
application of static semantic rules. These
environments are helpful during program translation.

CONCLUSION

In this paper the essence of object-oriented PFL -
experimental functional language has been
presented. The subject of our current research is to
exploit the process functional paradigm for
integrating functional, imperative and aspect-
oriented methodology, using simple, uniform and
still practical basis, appropriate for source-to-source
transformations, reasoning on the behavior and
verification experiments. Currently we have
implemented the compiler from PFL to both Java
and Haskell languages. Using PFL, the level of

abstraction has increased, preserving all abilities of
imperative languages, including the visibility of all
environments, providing a single tool for affecting
the state in the form of the application of processes.

As it was mentioned the type and type
environments have been inspired with Haskell. In
the paper the extensions of type environments and
manipulations over them are presented. Types and
type environments have been incorporated into PFL
compiler. It is also possible to use presented design
of types and type environments in similar problems
in other programming languages with minority
changes.

We are trying to give programmers simple and
understandable tool integrating functional language
and imperative style of programming. It is an
experimental language not only focused on
functional programming but also it is a platform for
object-oriented and aspect-oriented programming.
One of our aims is to extend PFL to be a parallel and
aspect-oriented language. Especially aspect-oriented
paradigm gives us the possibility to investigate the
area of software evolution based on aspect-oriented
approach. Research in extending PFL to be parallel
[1] is now in the phase of design and implementation
where the work was also inspired by the work in the
area of distributed functional languages such as
DClean [3].

REFERENCES

[1] Běhálek, M., Šaloun, P.: Paralelization of

Process Functional Language. Proceedings of 7-
th International Scientific Conf. on Electronic
Computers and Informatics ECI 2006, Košice-
Herľany, Slovakia, September 20-22, 2006, pp.
168-173, ISBN 80-8073-598-0

[2] Bobrow, D., G., Kahn, K., Kiczales, G.,
Masiner, L., Stefik, M., and Zdybel, F.:
CommonLoops: Merging Lisp and object-
oriented programming. Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages, and Applications
(OOPSLA), 1986, pp. 17-29.

[3] Horváth, Z., Hernyák, Z, Zsók, V.:
Implementing Distributed Skeletons using D-
Clean and D-Box. 17th International Workshop
on Implementation and Application of
Functional Languages IFL 2005 Dublin, Ireland,
2005, pp. 1-16.

[4] Hughes, J., and Sparud, J.: Haskell++: An
Object-Oriented Extension of Haskell. In
Proceedings of the Haskell Workshop, 1995.

[5] Kollár, J.: Process Functional Programming,
Proc. ISM'99, Rožňov pod Radhoštĕm, Czech
Republic, April 27-29, 1999, 41-48.

[6] Kollár, J., Porubän, J., Václavík, P.: From Eager
PFL to Lazy Haskell. In: Computing and
Informatics, 2006, pp. 61--80, ISSN 1335-9150.

8 Type Environments in Object Oriented Process Functional Language

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

[7] Leroy, X., Doligez, D., Garrigue, J., Rémy, D.,
and Vouillon, J.: The Objective Caml system,
documentation and user's manual - release 3.08.
INRIA, July 2004.

[8] Lüfer, K.: A framework for higher-order
functions in C++. In Proc. Conf. Object-
Oriented Technologies (COOTS), Monterey,
CA, 1995, USENIX.

[9] Odersky, M., Wadler, P.: Pizza into Java:
Translating Theory into Practice. Proc. 1997
ACM Symp. on Principles of Prog. Langs.
(POPL '97), Paris, France, pp. 146-159.

[10] Plasmeijer, R., Eekelen, M.: Concurrent Clean
Language Report version 2.1. University of
Nijmegen, November 2002.

[11] Václavík, P., Kollár, J., Porubän, J.: Object-
oriented Programming with Functional
Language. 8'th International Conference
ISIM'05, Hradec nad Moravicí, Czech Republic,
April 19 - 20, 2005, pp. 167-174, ISBN 80-
86840-09-3.

[12] Wadler, P., Blott, S.: How to make ad-hoc
polymorphism less ad hoc. In: ACM
Symposium on Principles of Programming
Languages, Austin, Texas, 1989, pp. 60-76.

BIOGRAPHIES

Peter Václavík was born in 1977. He received his
MSc. summa cum laude in 2000 and his PhD. in
Computing Science in 2004. Since 2003 he is with
the Department of Computers and Informatics at
Technical University of Košice. He was involved in
the research projects dealing with implementation of
functional programming languages and parallel
programming. Currently the subject of his research
is the application of process functional paradigm in
aspect oriented programming and program profiling
systems.

Jaroslav Porubän was born in 1977. He received
his MSc. summa cum laude in 2000 and his PhD. in
Computing Science in 2004. Since 2003 he is with
the Department of Computers and Informatics at
Technical University of Košice. He was involved in
the research projects dealing with implementation of
functional programming languages and parallel
programming. Currently the subject of his research
is the application of process functional paradigm in
aspect oriented programming and program profiling
systems.

