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SUMMARY 
The state of a system is expressed using PFL, a process functional language, in an easily understandable manner. The 

paper presents PFL environment variable - our basic concept of the state manipulation in the process functional language. 
The concept of the process functional language has been extended with an object-oriented paradigm features. The paper 
presents an abstract syntax of the object-oriented PFL and describes the syntax of types and type environments. In the paper 
main ideas of object-oriented PFL type checking and program translation in a compiler are explained. Finally the paper 
presents an example where type environments are inferred as a result of PFL program translation. Presented results 
described in this paper were implemented in PFL compiler.  
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1.  INDRODUCTION 
 

Object-oriented concepts are ubiquitous in 
programming. Objects may model real life entities, 
or may represent system artifacts like stacks. Objects 
provide a way to structure a system and to control 
the computation. One of the characteristics of 
object-oriented programming is inheritance, which 
allows new classes to be defined as increments of 
existing ones. Inheritance comes with dynamic 
binding, inclusion polymorphism (subtyping) and 
method overriding. 

In a functional language, a programmer declares 
referential transparent functions. Whenever a 
function is called, it returns the same result for the 
same arguments. Thus, functional programming 
languages allow for elegant reasoning. Furthermore, 
functional languages support specification and 
programming at a rather high level using type 
inference, parametric polymorphisms, high-order 
functions, lazy evaluation and algebraic data type. 

PFL, an experimental process functional 
language [5], is somewhere between imperative and 
pure functional languages, since the variable 
environment is visible to a user, and the source 
definitions of processes are purely functional, i.e. 
without assignments and without environment 
variables. This supports, as we believe, the 
simplification of the systems design and, at the same 
time, the simpler reasoning about the systems. From 
the viewpoint of implementation, PFL is somewhere 
between an impure eager functional language and a 
monadic lazy pure functional language. It is because 
the different binding of variable environment to PFL 
processes than that can be found in impure 

languages. So, the state of a system is expressed 
using PFL in an easily understandable manner. 
Coming out from monad and state transformers 
theory we define our concept of PFL variable 
environment.  

The research of languages that combines 
functional and object-oriented features has a long 
history. The aim is to integrate the formal methods 
benefits of functional programming, comfort to a 
programmer given by higher level of abstraction 
with the software engineering benefits of both 
paradigms. 

The approaches to integrate both paradigms can 
be divided into two categories. The first category 
comprises effort to extend functional language with 
object-oriented features [2,4,7]. The second one 
covers efforts to extend imperative object-oriented 
language with functional features such as higher-
order functions, algebraic data types and parametric 
polymorphism [8,9].  

In the section 0 we present basic approach to 
object-oriented programming in a process functional 
language. Nowadays the process functional language 
combines imperative, functional and object-oriented 
paradigms of programming. Process functional 
language has been extended to object-oriented 
language in a past few years and two compilers have 
been already implemented that compiles process 
functional code to Java and Haskell language.  

In the section 0 the types and type environments 
of a PFL program translation are described. Even 
though there is solution for PFL presented the one is 
applicable in other programming languages as well. 
This approach was inspired with Haskell. Short 
example concludes the section. 



2 Type Environments in Object Oriented Process Functional Language 
 
 
2. THE CURRENT STATE IN OBJECT 

ORIENTED PFL RESEARCH 
 

PFL is an extended subset of Haskell 
programming language. It is strongly typed 
functional language supporting pattern matching, 
local and global function definitions, algebraic and 
abstract data types, primitive function definitions, 
operator definitions, global and local variable 
environments. 

PFL type system comprises unit type () as it is 
in Haskell. This type comprises just control value, 
representing the control. It means for example, that 
it is impossible to mix data and control arguments 
for constructors of algebraic data types.  
Let T be a data type. Then the type  

()~
∪= TT  

ranges over a data type and unit type. The PFL 
process is similar to a function. Definition of a PFL 
process is same as a definition of a pure function. 
The only difference is in its type definition. Type 
definitions for processes are obligatory. The type 
definition of a process extends a syntax and 
semantics of a pure function type definition. The 
type definition of a process comprises either () for 
an argument or the value type, or an argument type 
in the form v T, where v is an environment variable 
and T is a data type. Examples of processes type 
definitions are provided later. The idea of 
incorporating of some aspects in function type 
definitions is also presented in Clean with its 
uniqueness attributes [10]. 

Functions are first-class values in PFL. On the 
other hand processes are not. Process cannot be 
passed as an argument to a function or returned as 
the result of a function. There is no partial process 
application. This approach has been chosen to 
simplify identification of program parts 
manipulating the state. The PFL static analyzer finds 
parts of a program affected by the state - processes.  

The well-known and commonly accepted 
concept of the variable environment in both 
imperative and impure functional languages is as 
follows. The variable environment Env is a mapping 
from variables to their values. If βαρ →::  
is environment and α∈a , β∈b , then the update 
expression is as follows. 
 

 
Symbol ∅  is used to define empty environment. 

The variable environment Env is defined using 
the update expression. 
 

Env = Var → Value 
access :: Var → Env → Value 
access x e = e x 
update :: Var → Value → Env → Env 
update x v e = e [ x 6 v ] 
 
In the type definition of Env, Var is a domain of 
environment variables and Value denotes a 
disjunctive unification of all PFL data types values. 

A syntactic form of a variable attributed type v T 
as an argument type of a process allows a user to 
consider the visible variable environment in role of 
input memory gate of process bodies, consisting of a 
subset of environment variables - memory cells that 
are possibly shared by multiple definitions of 
processes in the same scope.  

The processes may be applied either to control 
values, and computed using values accessed from 
the environment variables, or to data values and 
computed using them, updating the environment 
variables by this value before. 

Concluding, the state is defined by the 
environment that internally conforms to that used in 
imperative and impure functional languages, but for 
the reasons of its binding to process bodies, the PFL 
semantics is the same as the semantics of monadic 
approach [6]. In PFL, the access and the update of 
environment are uniform in each scope, by processes 
defined in the same scope as the environment - 
global, local or object one.  

Let us suppose a simple PFL process sum 
defined in a main scope, which has two environment 
variables a and b defined in a process type 
definition, as follows. 
 
    sum :: a Int -> b Int -> Int 
    sum x y = x + y 
 
Suppose an application sum 3 4 exists somewhere 
in an expression of a PFL program, such that sum is 
accessible (for example in a definition of a process 
in the main scope). Then the result of the application 
will be updating the environment variables a by the 
value 3, updating the environment variables b by the 
value 4, as an additional side effect to the evaluation 
of pure function. It means the value of the 
application will be 7. 

This is so because in the first stage of the 
translation the definition above is transformed to the 
form of pure function, as follows 
 
    sum :: Int -> Int -> Int 
    sum x y = x + y 
 
while each application of sum is transformed to the 
form, in which environment variable is applied to 
corresponding argument. For example, sum 3 4 is 
transformed to (sum (a 3) (b 4)). 
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Prog → CDecls IDecls Def main = exp Program 
CDecls → CDecl CDecls    
 | ε   
CDecl → class nαακθ …1⇒  where { }m

iiif 1:: =ϕ  Type class declaration (n ≥  0) 
IDecls → IDecl IDecls  
 | ε   
IDecl → instance nττκφ …1⇒  where { }m

iiif 1exp ==  Instance declaration (n ≥  0) 

Def → f  exp Def  
 | ε   
exp → x Identifier 
 | () Control value 
 | χ exp1 ... expn Type constructor 
 | κ exp1 ... expn Type class constructor 
 | exp1 expn Application 
 | λ x.exp Function abstraction 
 | x⇒ exp Object application 

 
Fig. 1 Abstract syntaxt of object-oriented PFL. 

 

 
 

On the other hand, if original argument is the control 
value (), then the transformed application may be 
for example (sum (a ()) (b 5)), provided 
that the source form is (sum () 5). Then the 
value of y will be 5 (updating b by 5), and the value 
of x will be the value accessed from environment 
variable a by the application (a ()). Provided that 
the value in a is 6, the value of (sum (a ()) (b 
5)) will be 11. If no value has been assigned to a 
before, then the value of the application is 
undefined. 

Since the access and update instances are applied 
implicitly, i.e. they never occur in the process 
definitions, the state change strongly depends on the 
order in which the arguments of a process are 
evaluated. 

Object-oriented approach is based on extension 
of abstract types known from pure functional 
languages [11]. The PFL oriented-oriented 
extensions are presented in the next example. 
 
data Color = Red | Green | Blue 
class Point where  

pointX :: x Int -> Int 
pointY :: y Int -> Int 
moveX :: Int -> Int 
moveY :: Int -> Int 

      
class (Point) => CPoint where   
  setColor :: c Color -> () 

    color :: c Color -> Color  
 

instance Point where 
pointX px = px 
pointY py = py 
moveX px = px + (pointX ()) 
moveX py = py + (pointY ()) 

    

instance CPoint where    
setColor pc = () 
color pc = pc 

 
There are defined two classes Point and CPoint 
in the example. Classes are defined as monomorphic 
type classes - it is possible to define only one 
instance declaration. The class Point defines two 
processes for direct manipulation of environment 
variables (coordinates) x and y. Class CPoint 
extends class Point. A function setNewX using 
CPoint objects can be defined as follows. 
 
 setNewX :: CPoint -> CPoint -> Int 
 setNewX p1 p2 = p1 => moveX ( 
    p2 => pointX ()) 
 
Arguments p1 and p2 represent objects. Function 
setNewX moves coordinate x of an object p1 
relatively to new position defined by value of 
coordinate x of an object p2. 
 

3.  TYPES AND TYPE ENVIRONMNETS 
 
Type checking is one of the most important parts 

of a program compiling. Usually the type checking 
is done during compile time. It is important to 
identify and infer types and create type 
environments during early stages of type checking 
for the later use when transformation rules are 
selected and applied. PFL has defined set of types 
(see section 0) and set of type environments (see 
section 0). The result of a PFL the program 
translation is presented on example focusing on 
inferred type environments (see section 0). 
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τ  → Tν   
 | τ   
 | ()   
 | nττκ …1  (n ≥  0) 
 | ττ →'   
τ  → α   
 | kττχ …1  (k ≥  0, )(χarityk = ) 
 | ττ →'   
T → nττκ …1  (n ≥  0) 
 | nττχ …1  (n ≥  0) 
ρ  → τττκττκ ⇒m

r
m

r m
……… 11

11
11 ,,

1
 (m ≥  0) 

σ  → τθαα ⇒∀ .1 l…  (l ≥  0) 
ϕ  → τφαα ⇒∀ .1 l…  (l ≥  0) 

θ  → m
r

m
r m

αακαακ ……… 11
11

11 ,,
1

 (m ≥  0) 

φ  → m
r

m
r m

ττκττκ ……… 11
11

11 ,,
1

 (m ≥  0) 

γ  → llm TTTT →→
~:,,~:,,, 11111 ννγγ ……  (m ≥  0, l ≥  0) 

T~  → T  
 | ()  

 
Fig. 2  Syntax of types. 

 
 

3.1.  PFL types 
 

The abstract syntax of PFL program is defined 
on the Fig. 1. Basic type definitions are denoted with 
symbols φχϕακθ  and ,,,, . The abstract syntax 
contains rules: 

 
• Abstract types declaration rules 

- Type class declaration 
- Instance declaration 

• Object manipulation rules 
- Object creation – application of a type 

class constructor 
- Object application – application of a 

process or function in the context of 
object 

• Basic processing of expression rules 

 
In the phase of source PFL program translation 

the rules of static semantics are used. Types and type 
environments are important parts of the translation 
rules. The PFL type system is inspired with the type 
system defined by Wadler and Blott [12]. Types 
used in static semantic of object-oriented PFL are as 
follows.  

 

 
 

 
Environment variable ν  is used only in type 

expressions. It is main reason of comprising 
environment variable in a set of types. Syntax of 
types is shown on the Fig. 2. Application of type 
rules is explained on next function type definition. 

  
BooleanaaaOrdf →→⇒ ][)(::  

 
This type definition is expressed with types defined 
on the Fig. 2 as follows. 
 

BooleanListOrdf →→⇒∀ αααα ).(::  
 
It is polymorphic type definition. It is possible to 
write it in next form. 
 

σ::f  
 

T  concrete type (algebraic type, class type) 
T~  argument type 
ν  environment variable 
τ  basic type 
τ  pure basic type 
θ  type class context 
φ  instance context 
ρ  overloaded type 
ϕ  extended polymorphic type 
σ  polymorphic type 
γ  variable environment 

α  type variable 
κ  type class name 
χ  type constructor 
()  unit type 
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Environment name Abbreviation Type 
Type Variable Environment TVE { }α  
Type Constructor Environment TCE { }k:χ  
Type Class Environment CE { }PFEn ⇒∀ θαακ .: 1…  
Class Variable Environment CVE { }γκ :  

Local Class Variable Environment LCVE { }TT →
~:ν  

Instance Environment IE { }nl ττκφαα …… 11 .: ⇒∀dpf  
Identifier Environment IDE { }ϕ:var  
Selection of Position Environment SPE { }i:sel  
Process and Function Environment PFE { }ϕ:pf  
Context of Process and Function Environment CPFE { }nττκ …1:dvar  
Current Instance Type CIT { }nττκ …1:dvar  
Context of Instance Environment CIE { }nττκ …1:dvar  

Object Environment OE { }envdvar,: var  

Environment of Variable Environment EVE { }exp: name  
Names Environment NE { }name  
Types Environment TE { }name  
Environment E (TVE,TCE,CE,CVE,IE,IDE,SPE,CPFE,PFE) 
Declarations Environment DE (CE,IE,IDE,CVE,SPE) 

 
 

Fig. 3  Type Environments. 
 
 
In this form of type definition the polymorphic type 

τθασ ⇒∀= .  where context αθ Ord= . Name 
Ord  is a class name and type variable α  is a type 
class parameter. Type τ  consists of two type 
constructors: 
 

• List – type constructor of arity 1. 
• Boolean – type constructor of arity 0. 

 
Also, we could write polymorphic type in the form 

ρασ .∀= . In this example type ϕσ = . Main 
difference between them is in context type. Context 
of extended polymorphic type ϕ  comprises types in 
the form nττκ …1 . It means that polymorphic type 
σ  is more general than type ϕ  due to comprising 
only type environment ( ϕσ ⊆ ).  
 
 
3.2.  PFL type environments 
 
 

In the phase of PFL program transformation the 
type environments are created and applied. These 
type environments comprise sufficient information 
to verifying validity of type variables, type 
constructors, class names and variable names in 
types and expressions. Type environments are 
shown on the Fig. 3. Names written in bold represent 
names produced in the compile time. Type 
environments are divided into next categories. 

 
 

• Simple environment – does not comprise 
other environment. 

• Compound environment – consists of other 
environments. 

 

Environment ENV is defined as a mapping of name 
into information (info) in next form. 
 

{name : info} 
 
This form describes environments except of TVE, 
NE and TE where only name without mapping is 
defined. 
We have defined operators within type 
environments. They are applied as a part of semantic 
rules. These operators are divided into two 
categories. 
  

• Operator for selection of environment from 
compound environment - of. 

• Operators for combination of environments 

- . and ,,, ENVENVENV

6
⊕⊕⊕⊕⊕

→→
 

 
Semantics of operator of is possible to explain on 
next application IDE of E. Operator of selects 
environment IDE from environment E. More 
complex semantics is defined for operators of 
environments combination. In first case the 
operators over simple environments are considered - 

→
⊕⊕, . They are defined as follows. 
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Fig. 4  Types unification rules. 

 
 

simpleEnvsimpleEnvsimpleEnv

simpleEnvsimpleEnvsimpleEnv

→×⊕

→×⊕
→

::

::
 

 
Type simpleEnv represents simple environment. 
Combination of two environments is written in next 
form 21 IDEIDE ⊕ . Operator ⊕  combines items of 
environment IDE1 and IDE2. The semantics is as 
follows. 

( )

( )
( )
( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

∉∧
∈

∉∧
∈

=⊕

1

22

2

11

21 if,

if,

ENVdomvar
ENVdomvarvarENV

ENVdomvar
ENVdomvarvarENV

varENVENV  

( )
( )
( )⎪

⎩

⎪
⎨

⎧

∈
∉∧
∈

=⊕
→

22

2

11

21
if,

if,
)(

ENVdomvarvarENV
ENVdomvar
ENVdomvarvarENV

varENVENV  

 
Expression ( )1ENVdom  represents domain of 

environment ENV1. Operators ENVENV
→
⊕⊕ ,  and 

ENV
6
⊕  combine simple environment simpleEnv and 
compound environment compEnv as follows. 
 

( )

compEnvsimpleEnvcompEnv

compEnvsimpleEnvcompEnv

compEnvcompEnvsimpleEnvcompEnv

ENV

ENV

ENV

→×⊕

→×⊕

→∨×⊕
→

::

::

::

6

 

 
The semantics of the operators is defined as follows. 
 

( )
( ) ( )
( ) ( )
( )

( )( )[ ]⎪
⎪
⎩

⎪
⎪
⎨

⎧

⊕
=⊕

⊕⊕
⊕⊕

=

⊕

otherwiseENVENVEofENVE
DEENVENVofSPE

ENVofCVEENVofIDE
ENVofIEENVofCEE

varENVENV

SPE

CVEIDE

IECE

ENV

,/'
' if,'

''
''

21

 

[ ]ENVENVEENVE

ENVENVEofENVEENVE

ENV

ENV

/''

]/)')[(('

=⊕

⊕=⊕
→→

6
 

The expression ( )( )[ ]ENVENVEofENVE /'⊕  
define substitution of environment ENV  as a 
combination of environment ENV and 'ENV . 
Semantics these operators are explained on short 
examples as follows. 
 

( )"… ,,',,,' SPEIDEIDEIETVEIDEE IDE ⊕=⊕  
 

The definition of compound environment E is 
shown on the Fig. 3. As a result the environments 
IDE  and 'IDE  are applied using operator ⊕  with 
semantics defined above. It is similar in the case of 

operator ENV
→
⊕ . 

 

),,',,,(' "… SPEIDEIDEIETVEIDEE IDE
→→
⊕=⊕  

 
The items of environment 'IDE  with the same name 
like in environment IDE  are favoured. The 

semantics of operator ENV
6
⊕  is a little bit different. 

 

),,',,,(' "…
6

SPEIDEIETVEIDEE IDE =⊕  
 
In the compound environment E  the environment 
IDE  is replaced with environment 'IDE . 
 
There are three implicit conditions defined over the 
environments. 

• The same variable var  cannot be 
comprised in two environments ENV1 and 
ENV2 if the operator ⊕  is applied. 

 
( ) ( ) ∅=∩ 21 ENVdomENVdom  

 
• The variable var  must be comprised in the 

environment ENV if the expression 
var ENV  is occurred. 

 

dom(ENV)var ∈  
 

• Only one instance of the same type has to 
be declared for type class. If the expression 

21 IEIE ⊕  is occurred, next condition is 
true. 
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The operator ∪  unifies two types (see Fig. 4). For 
other cases the result of unification is equal ⊥ .  
 
Example 
 
Now we will consider example from section 0. The 
type environments after the PFL program translation 
are inferred as follows.  
 

}0:Color{0 =TCE  

}
}ColorColorc:

)(Colorc:
{Point:CPoint

}IntInt:
IntInt:

IntInty:
IntIntx:

{:Point
{0

→
→

⇒〉〈
→
→

→
→

⇒〈〉
=

color
setColor

moveY
moveX
pointY
pointX

CE

 

}PointCPoint:{0 ⇒〉〈= omCPointselPointFrIE  

}
}ColorColorcCPoint:

)(ColorcCPoint:
}IntIntPoint:

IntIntPoint:
IntIntyPoint:
IntIntxPoint:

{

→⇒〉〈
→⇒〉〈

→⇒〉〈
→⇒〉〈

→⇒〉〈
→⇒〉〈

=

color
setColor
moveY
moveX
pointY
pointX

IDE

 

}
c,yx,:CPoint

yx,:Point
{

〉〉〈〈
〉〈

=CVE

 

}0:{ omCPointselPointFr=SPE  
 
These environments have been obtained by 
application of static semantic rules. These 
environments are helpful during program translation.  
 

CONCLUSION 
 

In this paper the essence of object-oriented PFL - 
experimental functional language has been 
presented. The subject of our current research is to 
exploit the process functional paradigm for 
integrating functional, imperative and aspect-
oriented methodology, using simple, uniform and 
still practical basis, appropriate for source-to-source 
transformations, reasoning on the behavior and 
verification experiments. Currently we have 
implemented the compiler from PFL to both Java 
and Haskell languages. Using PFL, the level of 

abstraction has increased, preserving all abilities of 
imperative languages, including the visibility of all 
environments, providing a single tool for affecting 
the state in the form of the application of processes.   

As it was mentioned the type and type 
environments have been inspired with Haskell. In 
the paper the extensions of type environments and 
manipulations over them are presented. Types and 
type environments have been incorporated into PFL 
compiler. It is also possible to use presented design 
of types and type environments in similar problems 
in other programming languages with minority 
changes.  

We are trying to give programmers simple and 
understandable tool integrating functional language 
and imperative style of programming. It is an 
experimental language not only focused on 
functional programming but also it is a platform for 
object-oriented and aspect-oriented programming. 
One of our aims is to extend PFL to be a parallel and 
aspect-oriented language. Especially aspect-oriented 
paradigm gives us the possibility to investigate the 
area of software evolution based on aspect-oriented 
approach. Research in extending PFL to be parallel 
[1] is now in the phase of design and implementation 
where the work was also inspired by the work in the 
area of distributed functional languages such as 
DClean [3]. 
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