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SUMMARY 
We consider dynamic delay guarantee and bandwidth allocation in communications networks. Our scenario includes 

linear pricing scheme for both Quality of Service parameters. The goal is (i) to maximize the revenue and (ii) guarantee fair 
resource allocation for connections. On the contrary to the traditional Lagrangian approach, we approach the problem by 
modified one, where the sum of the weights of the scheduler acts as the penalty term. This modified approach yields closed 
form approximate algorithm for updating the scheduler weights, being very fast and real-time implementable. We compare 
the algorithm with the brute-force method, which optimizes weights in the large grid - optimal brute-force method has 
exponential complexity. The revenue obtained by the closed form method is about 99.9 % of the optimal, computationally 
expensive approach, thus being tempting both from the point of view of the service provider and the customers. NS-2 
simulator is used in the experiments. 
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1. INTRODUCTION 

 
Packet scheduling discipline is an important 

factor of a network node. The choice of the 
discipline impacts the allocation of restricted 
network resources among contending flows of the 
communication network. Network operators can 
handle resource reservations by using traffic 
differentiation and design different kind of pricing 
strategies. The open question still arises: how to put 
these two issues together. Pricing research in the 
networks has been quite intensive during the last 
years and also novel queuing algorithms have been 
proposed, but combination of them have not been 
analyzed widely. Next, we will present summary of 
the recently made pricing work and after that we will 
highlight the mostly used queuing disciplines. A 
smart market charging method for network usage is 
presented in [24]. This paper studies individual 
packets’ bid for transport while the network only 
serves packets with bids above a certain (congestion-
dependent) cutoff amount. Charges that increase 
with either realized flow rate or with the share of the 
network consumed by a traffic flow is studied in 
[14], [15]. Packet-based pricing schemes (e.g. [8], 
[20]) have also been proposed as an incentive for 
more efficient flow control. The fundamental 
problem of achieving the system optimum that 
maximizes the aggregate utility of the users, using 
only the information available at the end hosts, is 
studied in [21]. They assume that the users are of 
elastic traffic and can adjust their rates based on 
their estimates of network congestion level. 
Equilibrium properties of bandwidth and buffer 
allocation schemes are analyzed in [23]. Pricing and 
link allocation for real-time traffic that requires strict 
QoS guarantees is studied e.g. in [27], [28]. Such 
QoS guarantees can often be translated into a preset 
resource amount that has to be allocated to a call at 

all links in its route through the network. If the 
resource is bandwidth, this resource amount can be 
some sort of an effective bandwidth (see, e.g., [16] 
for a survey of effective bandwidth characterizations 
and [26] for similar notions in the multiclass case). 
In this setting, [17], [6] propose the pricing of real-
time traffic with QoS requirements, in terms of its 
effective bandwidth. Their pricing scheme can also 
be called as static one and it has clear 
implementation advantages: charges are predictable 
by end users, evolve in a slower time-scale than 
congestion phenomena, and no realtime mechanism 
is needed to communicate tariffs to the users. 

There is also several research work done with the 
gametheoretic models of routing and flow control in 
communication networks (e.g. [30], [18], [19], [22], 
[1], [2]). These papers show conditions for the 
existence and uniqueness of an equilibrium. This has 
allowed, in particular, the design of network 
management policies that induce efficient equilibria 
[18]. This framework has also been extended to the 
context of repeated games in which cooperation can 
be enforced by using policies that penalize users 
who deviate from the equilibrium [22]. A revenue-
maximizing pricing scheme for the service provider 
is presented in [3]. Thus, a noncooperative (Nash) 
flow control game is played by the users (followers) 
in a Stackelberg gamewhere the goal of the leader is 
to set a price to maximize revenue. 

Two well-known scheduling algorithms are the 
packet-bypacket generalized processor sharing 
(PGPS) ([29]) and the worstcase fair weighted fair 
queueing (WF2Q) ([4]). The WF2Q has been 
proposed to eliminate PGPS burstiness problem 
exhibited in a flow packet departure process. Based 
on the fluid traffic model, the generalized processor 
sharing discipline provides the delay and buffer 
occupancy bounds for guaranteeing the QoS. The 
delay bound for the PGPS is provided e.g. in [29], 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 



 Fast Closed Form Approximation for Dynamic Network Resource Allocation 2

which is equivalent to the weighted fair queuing 
(WFQ) [7]. As outlined in [4], the departure process 
resulting from packet assignment by a PGPS server 
could be bursty. To avoid this problem, a new packet 
approximation algorithm of the GPS (i.e., WF2Q) 
was proposed in [4]. The queueing disciplines such 
as PGPS and WF2Q are based on a timestamp 
mechanism to determine the packet service 
sequence. The timestamp mechanism for all packets, 
however, entails implementation complexity. If a 
fixed length packet is used, the implementation 
complexity due to the timestamp mechanism can be 
reduced, in which a round robin discipline such as 
the weighted round robin (WRR) could be used. 
Although simple to implement by avoiding the use 
of timestamp mechanism, the WRR has a larger 
delay bound. To solve this problem, several 
modification approaches of the WRR have been 
proposed. As seen in [25] and [5], the uniform round 
robin (URR) discipline and the WF2Q interleaved 
WRR discipline emulate the WF2Q to determine the 
packet service sequence. These scheduling 
disciplines result in a more uniform packet departure 
and a smaller delay bound than those provided by 
conventional round robin. Extension to WRR 
algorithm for fixed length packets is studied in [10]. 
They present a scheduling algorithm for fixed length 
packets that do not emulate the WF2Q. As the 
timestamp mechanism is not necessary, the proposed 
algorithm can be implemented with a low 
complexity and low processing delay for high speed 
networks. 

Our research differs from the above studies by 
linking pricing and queuing issues together; in 
addition our model does not need any additional 
information about user behavior, utility functions 
etc. (like most pricing and game-theoretic ones 
need). This paper extends our previous pricing and 
QoS research, [31], [32], to take into account 
queuing scheduling issues by introducing dynamic 
weight tracking algorithm in the scheduler. QoS and 
revenue aware scheduling algorithm is investigated. 
It is derived from optimization problem, that 
resembles Lagrangian constrained approach, and 
approximate optimal closed form solution is 
presented, when QoS parameters are delay and 
bandwidth. 
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The rest of the paper is organized as follows. In 

Section 2, used pricing scenario is presented and 
generally defined. Closed form scheduling algorithm 
is derived in Section 3; in addition, Call Admission 
Control (CAC) mechanism as well as some upper 
bounds are presented in this section. Section 4 
contains experimental part justifying theorems. 

Discussions are made in Section 5, and final section 
contains conclusions of the work. 

 
2. DELAY AND BANDWIDTH MODELS 

 
In this section, we formulate expressions for 

delays (seconds) and bandwidth (bit rate) of the data 
traffic. Consider the packet scheduler for two service 
classes. There are now two service classes. Gold 
class customers pay most of money while getting 
best service, and silver class pay less of money. 
Bronze class customers pay least of money while 
getting worst service. 

Parameter Δti denotes time which passes when 
data is transferred through the queue i to the output 
in the switch, when wi = 1. If the queue is almost 
empty, delay is small, and when the buffer is full, it 
is large. Variable wi is the weight allocated for class 
i. Constraint for weights wi  is 
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Variables wi give weights, how long time queues i 
are served per total time. Therefore, delay di in the 
queue i is actually 
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Without loss of generality, only non-empty queues 
are considered, and therefore, 
 

,...,,1,0 miwi =≠  (3) 
 
where m is number of service classes. When one 
queue becomes empty, m –> m – 1. 

Bandwidth or bit rate is formulated as follows. 
Let the processing time of the data be T [seconds/bit] 
in the packet scheduler. There are Ni connections or 
packets in the class i. Let us denote the packet size 
bij [bits] or [kbytes] in the class i = 1, . . . , m and the 
connection j = 1, . . . , Ni. It is easy to see that 
bandwidth of the packet (i, j) is 

• linearly proportional to the packet size bij, 
• linearly proportional to the weight wi, 
• inversely proportional to the processing 

time T, and 
• inversely proportional to the total sum of 

the packet lengths bij , j = 1, . . . , Ni because 
other packets occupy the same band in a 
time-divided manner. 

 
Therefore, the expression for the bandwidth is 
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where the processing time T can be scaled T = 1, 
without loss of generality. Here 
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is mean packet length in the class i. 
 
 
3. PRICING MODELS AND REVENUE 

MAXIMIZATION 
 

We concentrate on the pricing and fair resource 
allocation from the point of view of the customers. 
On the other hand, from the point of view of the 
service provider, we try to maximize revenue. First, 
we introduce the concept of pricing functions. In the 
scope of our study, there are two QoS parameters, 
namely delay and bandwidth. Therefore, two 
separate pricing functions are defined. 

 
A. General pricing function 

Let the general pricing function be f = f(w1, . . ., 
wm). That means, f depends on the QoS parameters - 
in our study, delay and bandwidth - while QoS 
parameters depend on the weights wi of the 
scheduler. Let the constraint for the weights be 
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Revenue has the Lagrangian form 
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Derivative with respect to the weights is 
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Then - because  Σi wi = 1: 
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Thus derivative of the revenue is 
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Let us check the correctness of the derivative by 
direct substitution. Substitute Eq. (9) into Eq. (7). 
Then we obtain 
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and remember the constraint (6). Then we obtain 
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But this is the same as (10) in the space {Σi wi = 1}. 
 
B. Pricing models for delay and bandwidth 

The drawback in the previous scenario is that the 
algorithm developed from the gradient of the 
revenue is too complicated for fast implementation. 
Here we present the modified revenue criterion. Let 
the revenue be presented in the constrained form 
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under the constraint Σi wi = 1. It is seen from the 
criterion that the sum of the weights acts as the 
penalty term. If we consider linear pricing scenario, 
where revenue is decreasing as a function of the 
delay, and increasing as a function of the bandwidth, 
we get the pricing functions 
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where ri is the penalty factor for the delay in the 
class i in the pricing function, and d is the delay for 
the scheduler. On the other hand, 
 

∑=
i
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is the pricing function for bandwidth B, where ei is 
the pricing factor for the service class i. Total 
revenue can be expressed in the form 
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For all the connections, the pricing function can be 
presented in the form 
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Then the closed form approximation for the weights 
is as follows: 
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4. EXPERIMENTS 
 

In the first experiment, we use static traffic 
profile to justify the performance of the closed form 
algorithm. The parameters are as follows: 

• N = 15; 25; 70 number of connections in 
the gold, silver, and bronze classes, 
respectively. 

• Pricing factors for delays are r = 30; 15; 5 
for gold, silver, and bronze classes, 
respectively. 

• Time delays of the buffers are _t = 10; 25; 
50 for gold, silver, and bronze classes, 
respectively. 

• Vertical price shifting parameters are k = 
10000; 5000; 3000 for gold, silver, and 
bronze classes, respectively. 

• Pricing factors for bandwidths are e = 30; 
25; 22. 

 
The results are as follows. Revenue for closed 

form algorithm = 396950, and revenue for brute-
force method = 397290. Then, the revenue closed 
form/brute-force = 99.91 %. Thus, we can conclude 
that the revenue obtained by the closed form 
approximation is very near compared to the revenue 
obtained by the optimal brute-force method. 

In the second experiment, the parameters are as 
follows: 

• N = 30; 50; 100 number of connections in 
the gold, silver, and bronze classes, 
respectively. 

• Pricing factors for delays are r = 40; 20; 10 
for gold, silver, and bronze classes, 
respectively. 

• Time delays of the buffers are _t = 10; 25; 
50 for gold, silver, and bronze classes, 
respectively. 

• Vertical price shifting parameters are k = 
10000; 5000; 3000 for gold, silver, and 
bronze classes, respectively. 

• Pricing factors for bandwidths are e = 30; 
25; 22. 

 
Revenue for closed form algorithm = 607730, 

and revenue for brute-force method = 608680. Then, 
the revenue closed form/brute-force = 99.84 %. 

In the third experiment, the parameters are as 
follows: 

• N = 100; 50; 15 number of connections in 
the gold, silver, and bronze classes, 
respectively. 

• Pricing factors for delays are r = 50; 25; 15 
for gold, silver, and bronze classes, 
respectively. 

• Time delays of the buffers are _t = 20; 50; 
25 for gold, silver, and bronze classes, 
respectively. 

• Vertical price shifting parameters are k = 
10000; 5000; 3000 for gold, silver, and 
bronze classes, respectively. 

• Pricing factors for bandwidths are e = 30; 
25; 22. 

 
Revenue for closed form algorithm = 882440, 

and revenue for brute-force method = 883850. Then, 
the revenue closed form/brute-force = 99.84 %. 

 
 

5. DISCUSSION AND CONCLUSIONS 
 

Here we discuss the results and conclude the 
work: 

• We considered delay guarantee and 
bandwidth allocation of communications 
network. 

• Pricing scheme was linear for both QoS 
parameters. 

• We developed novel constrained 
optimization approach which resembles 
Lagrangian approach. 

• The approach yielded fast closed form 
approximation for optimizing the revenue 
of the service provider. 

• On the other hand, the algorithm gives fair 
resource allocation.  

 
General conclusion is the our approach makes 

possible for all people - including the people of 
modest means - to use communication services by 
using different pricing classes. 
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