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SUMMARY 
Decision diagrams (DDs) are frequently used and efficient data structures for discrete functions representation and 

manipulation. For different applications, different types of DDs have been defined. Most DD packages developed previously, 
such as: CUDD, BuDDy, TUD DD, BXD, CAL,... manipulate with binary decision diagrams (BDDs). This paper presents an 
approach for developing of a Universal Decision Diagram Package (UDDP) - application provided for manipulating with 
different types of shared multi-valued decision diagrams. The main idea is to develop core of a system that permits 
construction of various decision diagrams for different classes of discrete functions, and involve methods for DD 
manipulation independently on a concrete DD type. The core is simply adaptable for manipulation with different DD types. 
In the present version UDDP maintains manipulation with DDs for representation of functions defined in finite fields 
(qDDs), Multi-terminal decision diagrams (MTDDs) and Edge-valued decision diagrams (EVDDs). On the other side, 
UDDP is an "open source" project. It can be easy extended to the manipulation with other kinds of DDs. UDDP provides an 
effective component for visual representation of DDs. This component is also independent on the type of the DDs. 
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1. INTRODUCTION 
 

Many problems in digital logic design, artificial 
intelligence, telecommunications, etc. are based on 
manipulations with discrete functions. Because of 
that, various methods for representation of discrete 
functions have been developed. In 1986, Bryant 
proposed application of a graph-based representation 
of Boolean functions called Binary Decision 
Diagrams (BDDs) [2]. Analogously, for the multi-
valued discrete functions representation the 
Multiple-place Decision Diagrams (MDDs) are 
defined. Recently, decision diagrams (DDs) are a 
widely used way for representing discrete functions 
with a large number of variables. Decision diagrams 
that represent several discrete functions are called 
Shared DD [2]. In the last years, many algorithms 
for DD manipulation have been developed [17], [18]
and different kinds of DDs have been proposed to 
represent different classes of discrete functions [3], 
[13], [19]. 

DD programming is also a very frequently 
discussed problem in last years. In the papers [1] and 
[2] basic principles for DD programming are 
defined. In this paper we will discuss several DD 
packages, including CUDD [16], PUMA [7], 
BuDDy, TUD DD [8], CAL [14], etc. All these DD 
packages are developed on the base of the principles 
proposed in [1] and [2]. These packages are efficient 
in dealing with some particular type of binary DDs 
or for some classes of discrete functions. Because of 
that, it is a very interesting and useful task to 
develop a DD package for manipulation with 
different kinds of DDs, which could be able to 
realize a new kind of DDs and the corresponding 
manipulation algorithms.  

This paper presents an approach to the 
programming of decision diagrams, which results in 
a DD package that manipulates with different kinds 
of DDs in a uniform way. To provide this, it is 

needed to develop a package core, which has to be 
independent of the domain and range of the function 
represented as well as decomposition rules applied at 
the nodes of the decision diagram. This core has to 
be adaptable and extensible to manipulation with 
different kinds of DDs.  

This paper presents the UDDP (Universal 
Decision Diagram Package) - application, which is 
developed based on the presented approach. In the 
present version, UDDP is specialized for working 
with multi-valued qDDs (DDs that represent the 
functions defined in finite fields), MTDDs (Multi-
terminal DDs) and EVDDs (Edge-valued DDs). 
UDDP contains a component for visual 
representation of DDs that is independent of the kind 
of the DD. The object-oriented technology is used in 
both design and implementation of the UUDP. It 
enables an easy outbuilding of the package for 
manipulation with other kinds of DDs. For the 
object-oriented design of UDDP, we are using UML 
and RationalRose tool. The package is implemented 
in MS Visual C++. 
 
2. DECISION DIAGRAMS 
 

Decision diagrams are acyclic directed graphs 
that contain non-terminal nodes, terminal nodes and 
edges. In a DD for a function f with q-valued 
variables, non-terminal nodes are labeled with 
variables xi in f and have q outgoing edges. Outgoing 
edges are labeled with all possible values for a 
variable xi. Terminal nodes contain the values of the 
function f at the points defined by n-tuples, which 
label edges from the root node to the corresponding 
terminal nodes.  

DDs are classified with respect to the number of 
outgoing edges of non-terminal nodes, type (logic, 
integer, or rational numbers) and range of values for 
terminal nodes and with respect to the processing 
that is possible to be done. For example: 
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- BDDs are DDs where non-terminal nodes have 
two outgoing edges � they represent Boolean 
functions; 

- MDDs are DDs where non-terminal nodes have 
more than two outgoing edges � they represent 
multi-valued discrete functions; 

- FDDs (functional decision diagrams) are DDs 
where terminal nodes contain the Reed-Muller 
spectral coefficients; 

- MTDDs are DDs in which terminal nodes values 
can be of any type and range; 

- EVDDs are DDs in which edges contain additive 
data assigned as weights of the edges. 

- qDDs are DDs that represent discrete functions, 
which are defined in finite fields, i.e. qDDs are 
DDs where values for a terminal node are in a 
finite set {0,1, �, q-1}. 

Example 1. Fig. 1 shows BDD of a Boolean 
function f(x1,x2,x3) defined by the truth-vector 
F=[0,0,0,0,0,1,1,1] and a MTMDD of a ternary 
function g(x1,x2,x3) defined by the truth-vector G= 
[0,0,0,0,0,0,0,0,0,0,0,5,3,0,5,3,0,5,3,0,5,3,3,3,3,3,-2,-2]. 

 
 

Fig. 1  BDD for the function f (a) and MTMDD for 
the function g (b) in Example 1 

 

3. RELATED WORKS 

3.1.  Programming of DDs 

Previous experiences in DD programming show 
that the basic problems in DD package 
implementation are to:  

choose an appropriate data structure for 
representation of nodes in the DD; 
support basic principles for DD programming; 
select an efficient algorithm for generation of 
DD. 
 
This section presents an approach to the solution 

of the specified problems, which is used in existent 
DD packages. 

 
3.1.1. Data structures for representation of a 

node in the DD  

Data structure for BDD node representation, 
defined in [2] which is usually used in existing BDD 

packages is shown on Fig. 2. In the structure high 
and low note pointers to the successor nodes, 
index � the level of the node in BDD, id � unique 
node identification number, value � the value of 
terminal node, ref_counter � number of input 
edges and mark notes if the node is processed in 
some manipulation algorithm with the BDD. 
 

struct node 
{
  node *high,*low; 
  int index; 
  int value; 
 int id; 
 int ref_counter; 
 boolean mark; 
}

Fig. 2  Data structure for BDD node representation 
 

The similar data structure for representation of 
nodes in a MDD suggested in[11] is shown in Fig. 3. 
 

typedef struct node *DDedge; 
typedef struct node 
{
 int ref; 
 char value,flag; 

DDedge next, previous; 
 DDedge edge 0 ;
} node; 

Fig. 3  Data structure for MDD node representation 
 
3.1.2.  Basic principles for DD programming 
 

Basic DD programming principles are defined in 
[1] and [2]. Most of the existing DD packages are 
implemented by their use. The principles propose to: 
1. Support dealing with shared DDs. � In shared 

DDs, some nodes in the graph is shared by more 
functions. The number of nodes in shared DDs is 
smaller than the sum of nodes in separate DDs. 

2. Store nodes into a unique node table. � Using the 
unique node table guarantees that at any time 
there are no isomorphic subgraphs and redundant 
nodes. To minimize time for searching a node in 
the table, the node table is usually realized as a 
hash table.  

3. Support strong canonicity. � Due to the existence 
of the unique table, two equivalent functions are 
represented by exactly the same subgraph within 
the shared DD. This property is referred as 
strong canonicity.  

4. Have a unique compute table � Compute table 
keep few recently computed functions. This table 
is also implemented as a hash table.  

5. Use complemented edges � If edge pointed to a 
subgraph representing considered function is 
denoted as complemented then complemented 
values of function are used. Using of 
complemented edges is one of the ways to reduce 
the size of a DD defined as the number of nodes 
in the DD [2]. 
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6. Perform an efficient memory management. - In 
DD manipulation, a large number of DDs are 
constructed and than deleted. Nodes, which are 
no longer used, are not freed immediately. 
Instead, a garbage collection is called from time 
to time to recover all the unused memory. 

7. Support a dynamic variable reordering. - DD size 
depends on the order of variables. Dynamic 
variable reordering implies that every time when 
the number of non-terminal nodes grows up to a 
limited size, the re-ordering process is invoked 
automatically. 
 

3.1.3.  DD building and manipulation 
 

There are different ways for representation of 
discrete functions (truth-table, cubes�). Due to, 
different algorithms for DD building have been 
developed. They are all based on building of partial 
DDs and contain series of operations on DDs. In the 
case of qDDs, operations in finite fields are used. In 
other DDs considered in this paper, operations 
corresponding to the type of values of terminal 
nodes (integer, real, complex�) are used. One of the 
basic principles for DD programming is usage of the 
unique compute table. Due to, all operations in finite 
field are improved by using one operator. In the 
binary logic, this is the ITE operator [1], but in 
multi-valued logic it is the CASE operator [17]. 

 
ITE operator is a 3-variable (F,G,H) Boolean 

function defined as: If F then G else H, and in a 
formal way as: 
 

HFGFHGFite ,,  (1) 

 
CASE operator in q-valued logic is a (q+1)-

variable function defined as follows:  
 

iFGGGGFCASE iq for    110 ,,,, . (2) 

 
Instead of the CASE operator, the paper [12]

proposes using of MIN and MAX operators.  
 
3.2.  Visualization of DDs 
 

Problem of visualization of DDs is not enough 
resolved in existent DD packages. For example, 
several packages use external programs for drawing 
oriented graphs. For instance, CUDD and BuDDy 
use DOT program, which contains its own algorithm 
for placing nodes at the levels. Therefore, nodes 
from the same �natural� level in DD, can be written 
in different levels in the picture. Because of that, 
pictures of DDs generated by DOT and similar 
programs are often not sufficiently descriptive.  

DD package Jade [4] contains its own 
component for visual representation of DDs, which 
determine the position of nodes according to the 
position of their first appearance in the complete 
decision tree. Because of that, picture of a DD can 

be unsymmetrical. Fig. 4 shows an example of the 
pictures of DD generated by Jade.  
 

 
 

Fig. 4  Picture of a DD generated by Jade 

In the package PUMA, the same arrangement of 
nodes is used, but the nodes are allocated 
equidistantly throughout the level. In this package, 
all aesthetic components of visual representation are 
hard-coded (color of the nodes and edges, size of the 
nodes, distance between levels, etc), and all edges 
are drawn as straight lines. Because of that a picture 
of DD can contain many edges crossing and passing 
of edges through the nodes. An example of picture 
of a DD generated by PUMA is shown in Fig. 5. 
 

 

Fig. 5  Picture of DD generated by PUMA 
 
 
4. DD PROGRAMMING APPROACH USED 

IN PROGRAMMING OF UDDP  
 

The basic goal in UDDP programming is to 
provide �universality�, i.e. feasibility of working 
with different kinds of DDs. To achieve this goal, 
the DD package should: 
- Support traditional DD programming principles 

(discussed in Section 3); 
- Contain �universal methods� (methods applicable 

to different types of DDs) always when it is 
possible; 

- Replace the existing 'universal method' by a 
more efficient one whenever it is possible;  

- Enable an easy extension of the package to 
manipulation with other DDs type.  
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�Universal methods� use �universal� operations 
on DD nodes that can be implemented in different 
ways for concrete kinds of DDs. For example, for 
building of MDD, the operations MIN and MAX are 
used. In the case of qDDs, these operations are 
realized by using of CASE operator, as suggested in 
[12]. In the case of MTDDs MIN and MAX is 
realized by calling a �universal� recursive method for 
evaluation of a binary operation on DD nodes. This 
method is introduced because algorithms for 
different operations on DD nodes are different only 
at the level of terminal nodes. A programming code 
for evaluation of any binary operation on DD nodes 
in MTDDs is shown in Fig. 6.  

 
BinOp(a,b,opCode)
{
 Result = computeTable.search( 
   new computeFunction(a,b,opCode)); 
 if ( result != 0 ) 
  return result; 
 if ( a->level==0 && b->level==0 ) 
  result=(*FunctionTable[opCode])(a,b); 
 else 
 { 
  maxLevel = max(a->level,b->level);
  for( i=0; i<a->succNo; i++ ) 
   succ[i]=BinOp( 
     a->cofactor(maxLevel,i), 

 b->cofactor(maxLevel,i), 
 opCode); 

  result=getNode( 
    new Nonterminal(maxLevel,succ)); 
 } 
 computeTable.add(new ComputeFunction( 
   a,b,opCode,result)); 
 return result; 
}

Fig. 6  Method for evaluation of binary operation on 
DD nodes in MTDD 

 
A �universal� method for evaluation of any 

binary operation on DD node in qDDs has been 
proposed in [5]. This method is based on a 
relationship between the definition tables of 
operations in finite fields and the CASE operator, 
which is introduced in [5]. In that paper, there are 
shown: a relationship between the definition table of 
a Boolean operator and realization of that operator 
by ITE and the relationship between definition table 
of a q-valued operator and the corresponding CASE 
operator. 

Let Boolean operator OP is defined by a 
definition table V as shown in the Tab. 1.  
 

OP 0 1 
0 v0,0 v0,1

1 v1,0 v1,1

Tab. 1  Definition table of Boolean operation OP

If two switching functions a and b are 
represented by BDDs, and operator OP is defined by 

the definition table V, computation of aOPb can be 
realized by the ITE operator as follows: 
 

0,01,00,11,1 ,vb,v,ite,vb,va,iteitea,bOP  (3) 

 
If a q-valued operator qOP is defined by a 

definition table V as shown in the Tab. 2, and two 
multi-valued functions a and b are represented by 
qDDs, then the operator qOP can be realized by the 
CASE operator as:  

 

))1,1,,0,1,

),...,1,1,,0,1,

),1,0,,0,0,(,(,

qqvqvbCASE

qvvbCASE

qvvbCASEaCASEbaqOP

(                               

 (                               

 
 (4) 

 
qOP 0 1  q-1 

0 v0,0 v0,1  v0,q-1

1 v1,0 v1,1  v1,q-1

     
q-1 vq-1,0 vq-1,1  vq-1,q-1

 
Tab. 2  Definition table of a q-valued operation qOP 
 

Besides in building, the operations on DD nodes 
are also used in different DD manipulations. One of 
often-resolved problems is calculation of a spectral 
transform over DDs. In [5], is shown a generic 
approach to calculation of spectral transforms over 
DDs. Spectral transform computation on DDs can be 
realized as a set of operations of addition (+) and 
multiplication (*) in the corresponding algebraic 
structure where the transform is defined. Because of 
that, a method for spectral transform calculation can 
be realized as a �universal� method. This method 
uses the operations ADD for addition and MUL for 
multiplication that are realized in different ways for 
different kinds of DDs (similarly to the realization of 
MIN and MAX operations).  

It is shown that an object-oriented approach in 
both UDDP design and implementation is the most 
convenient way to achieve the proposed goals. To 
satisfy the universality we should use parameterized 
classes. For example, most of defined DD 
manipulation algorithms are independent of the 
terminal node values type. Mechanism of replacing a 
given method with another one is available in the 
object-oriented approach (in the derived classes 
virtual methods from based classes can be re-
defined). Because of that, our approach in UDDP 
development is: to define a set of basic classes 
including all universal methods for DD 
manipulation. For a concrete type of DDs, to define 
appropriate system of classes derived from defined 
basic classes in which, some methods from base 
classes can be re-defined and some new methods 
(characteristic for concrete DD type) can be added. 
In that case, addition of a package for new types of 
DDs representation will be simple. Classes for 
representation and manipulation of a new type of 
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DDs will be derived from the classes for 
representation of the most similar DD type. 
 
5. FEATURES OF UDDP 
 

An MDD program package should provide: 
1. Manipulation with a different types of shared 

MDDs (where BDDs are one special case of 
MDDs); 

2. Efficient visual representation of DDs;  
3. Representation of DDs suitable for using by 

different modules, applications and Internet; 
4. A user-friendly interface. 

 
The basic problem in development visual 

representation of a decision diagram is to determine 
optimal arrangement of nodes (arrangement with a 
minimal number of edges cuttings and minimal 
number of edges breaks-through the nodes). Second, 
visual representation of DDs should not be static. It 
should enable a manual moving of DD elements in 
the viewer and showing different information about 
DD elements (nodes and edges).  

To transfer data between different modules, 
applications, and through Internet, XML format is 
usually used. Because of that, UDDP should to 
contain a converter of internal DD representation 
into the XML format, and vice versa. 

A user of UDDP package need not to be 
familiarized with implementation details, but he 
must specify a way for construction of a DD; 
processing that will be done; and an information 
about final DD which he is interested in. It follows 
that UDDP should contain an efficient visual user-
interface for management by DD manipulation.  
 
6. UDDP IMPLEMENTATION DETAILS 
 

Based on the approach discussed in Section 4, 
we build the UDDP package. UDDP is provided for 
manipulation with different kinds of shared multi-
valued DDs. In both design and implementation 
process of UDDP, the object-oriented approach (as 
suggested in Section 4) is used. For the design 
process, the UML (Rational Rose tool) is used while 
for a package implementation the C++ programming 
language is used. 

For realization of four fundamental features of 
UDDP reviewed in Section 5, there are four basic 
components provided in our application: 
DDPLibrary, Graph, XMLProcessor and 
IOManager. The main diagram of UDDP 
architecture is shown in Fig. 7. 
 
6.1.  DDPLibrary 
 

DDPLibrary is in charge for creating and 
different processing of DDs. DDPLibrary contains 
a set of base classes including all universal methods 
for DD manipulation, and classes specialized for 
qDDs, MTDDs (with different types of terminal 
nodes values) and EVDDs (with different types of 
terminal nodes and edges values) manipulation. 

Package DDPLibrary contains three subpackages: 
Node, Engine and DDCore. 

 

DDPLibrary

Graph

XMLProcessor

IOManager

 
 

Fig. 7  Main-diagram of UDDP architecture 
 

As shown in Section 3, the first task in DD 
programming is to choose efficient data structure for 
DD node representation. DDPLibrary contains 
class system for DD node representation grouped in 
the package Node (see Fig. 8).  
 

ValueT

Terminal

value : ValueT

EdgeValT

ValuedEdge

value : EdgeValT

NonTerminal

succNo : unsigned
var : unsigned

DDNode

id : unsigned long
mark : bool
inEdgesNo : unsigned
level : unsigned
next : Node*
$ nodeNo : unsigned long

Edge

n+succ n

1

+targetNode

1

 
 

Fig. 8  Class diagram of the package Node 
 

Base class in the system is a DDNode class 
containing common attributes of all DD nodes such 
as: unique id, mark, number of input edges, level 
and pointer of the next node at the same level. From 
this class, classes Nonterminal and Terminal 
are derived. Class Nonterminal contains the 
corresponding variable index, dynamic vector of 
outgoing edges and their number. In ordered DDs, 
there are non-terminal nodes labeled with the same 
variable at the same level. In that case, the class 
Nonterminal has not to contain attribute var 
(variable index). This adding of attributes enables 
manipulation with unordered DDs. Representation 
of edges as a dynamic vector enables manipulation 
with heterogeneous DDs (whose different non-
terminal nodes have different number of outgoing 
edges). Class Terminal contains the value of the 
represented function. The function value can be of 
the different type. We use standard C++ types and 
type Complex. It can be any type with defined 
operators <<, >>, =, ==, <, + and *. Class Edge 
represents edges in DDs. This class contains pointer 
to the target node. UDDP can also manipulate with 
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EVDDs. In EVDDs, the class ValuedEdge 
represents an edge. This class contains value of the 
edge (that is also of the optimal type). If it is needed 
additional information about edges, a new class for 
edge representation can be derived from the class 
ValuedEdge. 

Classes responsible for storing and manipulation 
of a DD node are grouped into the package 
Engine. Fig. 9 shows class diagram of the package 
Engine.  
 

EVDDEngine MTDDEngine

UniversalComputeFunction

operation :  unsigned

qDDEngine

ComputeFunction

argNo : unsigned

DDEngine

hashSize : unsigned long
q : unsigned
levelsNo : unsigned
levelMap : unsigned*
varMap : unsigned*

1..n+computeTable 1..n

DDNode
(from DDNode)

n

+terminals

n

n
+arguments

n 1

+result

1

1..n

+nodeTable

1..n

n+levels n

 

Fig. 9  Class diagram of the package Engine 
 
 

Basic class in this package is a DDEngine. It 
contains both, unique node table and compute table 
(which are realized as hash tables). In the 
DDEngine all basic operations on DD nodes, 
needed for DD building and manipulation, are 
defined as pure virtual methods. There are 
implementations of these operations in the classes 
derived from DDEngine because the same 
operation is realized in different ways for different 
DD type. For example, in qDDs all DD node 
operations can be realized by using only one 
operator (CASE operator). One operator usage 
speeds up DD manipulation because a finding of a 
recent computation in the compute table is more 
probable. The compute table for qDDs is also very 
simple. It is sufficient to memorize only the input 
arguments and result of every executed operation. In 
other DD types, for each executed operation, the 
operation type has to be known. This problem can be 
resolved in two ways: by using different compute 
tables for different operations or by using one 
compute table in which for each computation the 
operation code is memorized. In our UDDP the 
second way is used. 

There are set of classes for DDs representation in 
the package DDCore. Fig. 10 shows the class 
diagram of the package DDCore. 

Basic class for multi-valued decision diagram 
representation is a MDD class. It contains all standard 
DDs manipulation methods (for building of DD on 
the base of different representation of discrete 
functions, function composition, cofactor 
computing, spectral transforms... All methods in this 

class are realized as virtual. If for a concrete type of 
DDs there exist efficient algorithms for some 
methods defined in this class, in the derived class 
(representing a concrete DDs type) these methods 
are redefined. In classes representing concrete DDs 
type several methods are realized for few spectral 
transforms. For example, in qDD class there exist 
methods for GF and RMF transforms, in MTDD class 
there are methods for Walsh and arithmetic 
transform calculation, etc. There is also a universal 
spectralTransform method in the MDD class. 
This method is based on an algorithm proposed in 
[5] and realizes any spectral transform defined by a 
basic transform matrix and by definition tables for 
operations + and *. Definition tables of operations 
are used only in qDD, in other type of DDs 
operations + and * coincide with arithmetic 
operations of addition and multiplication. 

 

qDD

ValueT
EdgeT

EVDD

ValueT

MTDD

TqDD

ValueT

MDD

qValue : unsigned
varNo : unsigned
outNo : unsigned

DDNode
(from DDNode)

1..n

#rootNodes

1..n

DDEngine
(from Engine)

1#ddEngine 1

1..n

+nodeTable

1..n

n
+levels

n

 
 

Fig. 10  Class diagram of the package DDCore 
 
 

The component DDPLibrary is a basic 
component for DD representation and manipulation. 
Because of that, it was developed independently of 
other components of the system, and can be 
compiled and used absolutely in both DOS and 
UNIX (LINUX) operating systems. 
 
 
6.2.  Graph 
 

Graph component is in charge for visual 
representation of DDs. For drawing of DDs, the 
UDDP uses an algorithm for drawing directed 
graphs proposed in paper [6]. This algorithm 
contains four steps:  

- placing the nodes in discrete levels; 
- setting the order within levels; 
- setting layout coordinates of nodes; 
- drawing of edges. 

 
In DDs, nodes are assigned to the levels. Because 

of that, first step in DD drawing is creation of a 
primary visual representation of the DD where Y 
coordinates of nodes are determined by their levels 
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and X coordinates are determined by order of nodes 
in depth-first traversal of graph. 

The goal of ordering nodes within levels is 
minimizing the edge crossings. This step is realized 
by using an iterative algorithm that is proposed in 
[6]. Each iteration of that algorithm consists of three 
actions: computing median values of nodes (median 
values of X coordinates of neighbor nodes), sorting 
of nodes by median values throughout the levels, 
and transposition of neighbor nodes at the levels 
while edge crossings are reduced. The proposed 
number of iterations in that step is 24.  

The goal of shifting the nodes by X coordinates 
throughout levels is minimization of edges lengths. 
In our program, X coordinates of non-terminal and 
terminal nodes are determined in different ways. For 
setting of X coordinates of non-terminal nodes, an 
iterative algorithm based on computation of the 
median values is used. Terminal nodes are placed 
evenly from the left to the right margin of the 
picture. 

In the last step edges are drowned as Bezier 
curves with four control points. Bezier curves are 
used when angles of edge crossings should be 
increased and when edges should to bypass the 
nodes.  
 
 
Example 2. Figures 11 � 14 show pictures of the 
DD of the function ADD2 (2-bit adder) after each 
step of drawing algorithm. 
 
 

4 4

3 3 3   3  3   

2 2 2   2  2   2

1 1

0 1
 

 
Fig. 11  The first picture of the DD of the ADD2 
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Fig. 12  Picture of the DD after node ordering 
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Fig. 13  Picture of DD after X coordinates setting 
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Fig. 14  Picture of DD after edges placement 

 
Visual representation of DD in UDDP is not 

static. It enables manual relocation of nodes; manual 
deformation of edges, displaying different 
information about node or edge in the DD; writing a 
graph to a file, etc. User can define complete 
appearance of the graph (size and color of the nodes, 
distance between levels, data which will be shown at 
the graph, etc.). Each element of the graph can be 
marked by one left click. Reallocation of the marked 
element is limited. Nodes can be moved only at the 
same level; edges can be distorted, but choice and 
target node cannot be changed. More information 
about a particular node or edge is shown after left 
double-click on the corresponding node (edge). 
 

 
Fig. 15  The main window of the UDDP 

 
6.3.  IOManager 
 

IOManager is in charge for the user interface. 
UDDP is a Windows application and IOManager 
enables communication between user and 
application by using Windows resources (menus, 
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dialogs, icons�). Main window of the application is 
shown in Fig. 5. 

 
6.4.  XMLProcessor 

XMLProcessor is responsible for conversion of 
an internal DD representation into the XML format, 
and vice versa. XMLProcessor contains two 
components: XML-writer and XML-reader. XML-
writer converts internal DD representation into XML 
format while XML-reader interprets a XML format 
(builds DD on the base of its XML file). In 
XMLProcesor implementation MSXML 4.0 is used.  

7. CONCLUSION 

DDs are a state-of-the-art data structure used in 
modern VLSI CAD tools. Especially, BDDs are very 
interesting. Several packages are provided for BDDs 
manipulation. In the last decade there is a renew 
interest in multi-valued logic. MDDs are efficient 
data structure for multi-valued discrete function 
representation and manipulation. Unlike to BDD 
manipulation packages, the efficient MDD 
manipulation packages are not developed yet. Some 
particular examples are given in [11].  

This paper presents the Universal DD Package, 
which manipulates with qDDs, MTDDs and 
EVDDs. However, it is designed in such a way that 
represents an open source project and can be easily 
adapted to deal with any other MDD types. UDDP is 
a Windows application containing tools for visual 
representation of DDs and their conversion into the 
XML format. 
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