
Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 5

OBJECT-ORIENTED PATTERN-BASED LANGUAGE IMPLEMENTATION

*Xiaoqing WU, *Barrett R. BRYANT, *,**Marjan MERNIK
*Department of Computer and Information Sciences, University of Alabama at Birmingham, USA

E-mail: {wuxi, bryant, mernik}@cis.uab.edu
**Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

E-mail: marjan.mernik@uni-mb.si

SUMMARY
Formal methods are often used for programming language description as they can specify syntax and semantics precisely

and unambiguously. However, their popularity is offset by the poor reusability and extendibility when applied to non-toy
programming language design. One cause of this problem is that classical formal methods lack modularity. Meanwhile there
are always needs for informal constructs for semantic analysis, and there is no simple and precise way to specify informal
constructs by formal specification, which makes the formal specification too complicated to understand. To address the
aforementioned problems with modern software engineering technology, we conbine object-oriented Two-Level Grammar
with Java to modularize language components and apply design patterns to achieve the modularity and implement the
informal constructs in a proper way.

Keywords: design patterns, object-oriented technology, programming language implementation, two-level grammar

1. INTRODUCTION

The advantages of using formal methods for
programming language definition are well known as
they can be used to specify syntax and semantics in
a precise and unambiguous manner and offer the
possibility of automatically constructing compilers
or interpreters [1]. However, despite obvious
advantages, most widely used formal methods such
as attribute grammars, axiomatic semantics,
operational semantics and denotational semantics [2]
are yet to gain popularity and wide application due
to the poor readability, reusability and extendibility
[3]. There are several factors for this, and the
following two are most critical:

Traditional formal specification for language
implementation lacks modularity [3]. The
different phases of interpreter or compiler
implementation (e.g. lexical analysis, syntax
analysis and semantics analysis) are always
tangled together, and the specification for real
programming languages is always very large
and complex. However, the traditional formal
methods lack mechanisms to encapsulate the
language components for tight cohesion inside
a module and loose coupling between modules.

Formal specification for language
implementation lacks abstraction. The
semantics of a programming language are
diverse, which hinders specification by pure
formal methods. Many mathematics-based
formal specifications do not provide a strong
library mechanism and I/O capabilities, which
make them quite complicated to address low-
level semantics implementation and hard for
user comprehension, therefore the specification
is hard to be reused even though they are well
modularized. On the other hand, the general
purpose programming languages (GPL) such as

Java offer an abundant library of classes and
can be directly used with ease.

In order to address these two issues by providing

more readability, extendibility and reusability for
programming language specifications, we apply
object-oriented technology and design patterns [4]
on formal specifications and GPL Java to design a
framework for automatic parser generation and
semantics implementation.

In this framework, we use Two-Level Grammar
(TLG) [5] as an object-oriented formal method to
properly encapsulate the entwining lexical/syntax
rules and abstract semantics of each grammar
symbol into a class, and use Java, a GPL, to address
the semantics implementation details and obtain the
interpreter for the desired language. Therefore, we
maximize the automatic code generation capacity of
formal specification to precisely specify syntax and
semantics, and utilize the massive library of classes
in programming languages such as Java to avoid
overly complicated use of formal methods. As a
result, reuse or extending the language can be easily
achieved by rewriting or extending the terminal
symbol classes.

The reminder of this paper is structured as
follows. Section 2 introduces TLG specification and
the concepts of abstract semantics and concrete
semantics. Section 3 presents the overview of the
whole framework and some of its salient features.
Section 4 details the object-oriented design of
language implementation in this framework
regarding the interpreter pattern [4]. Section 5
presents how we use the chain-of-responsibility
pattern [4] to separate the formal and informal
concerns in semantics analysis and section 6
demonstrates in depth how readability, extendibility
and reusability are obtained with our approach.
Section 7 describes the related work. We conclude
and suggest future research in section 8.

6 Object-Oriented Pattern-Based Language Implementation

2. BACKGROUND KNOWLEDGE

2.1 Two-Level grammar specification

TLG (also called W-grammar) was originally
developed as a specification language for
programming language syntax and semantics and
was used to completely specify ALGOL 68 [6]. It
has been shown that TLG may be used as an object-
oriented formal specification language to be
translated into existing GPLs [7]. The name �two-
level� comes from the fact that TLG contains two
context-free grammars corresponding to the set of
type domains and the set of function definitions
operating on those domains respectively. The syntax
of TLG class definitions is:

class Identifier-1.
 [extends Identifier-2, �, Identifier-n].
 {meta rule and hyper rule declarations}
end class.

Identifier-1 is declared to be a class which may
inherit from classes Identifier-2, �, Identifier-n.

The type domain declarations (also called meta
rules) have the following form:

Id1, ..., Id-m :: DataType1; �; DataType-n.

which means that the union of DataType-1,
�,DataType-n forms the type definition of Id1, �,
Id-m.

The function definitions (also known as hyper
rules) have the following forms:

function-signature:
 function-call-11, �, function-call-1j;
 �;
 function-call-n1, �, function-call-nj.

The function body on the right side of �:�

specifies the rules of the left hand side function
signature. Symbol �;� is used in the right hand side to
delimit multiple rules which share the same function
signature on the left hand side. For more details on
the TLG specification language see [5].

In this framework, we rewrite the TLG keyword
class as terminal and nonterminal, and use the
following TLG notations for different constructs in
the class for each grammar symbol:

Meta-level keyword Lexeme for lexical rules
Meta-level keyword Syntax for syntax rules
Hyper-level keyword semantics for semantics

2.2 Abstract semantics and concrete semantics

One distinguishing feature of our approach is
that we separate abstract semantics and concrete
semantics in compiler design, using formal
specification and GPL to handle them respectively.

In this paper, abstract semantics refers to the
semantics of a nonterminal that are used to describe
the composition of this nonterminal by other
grammar symbols. This kind of semantics can be
easily specified by formal specification such as
TLG. For example, if a program is composed by
declarations and statements, then the semantics for
program can be specified in TLG as:

nonterminal Program.
//Syntax definition
semantics :

Declarations,
 Statements.
end nonterminal.

which means that the semantics of Program is
simply composed by the semantics of Declarations
and Statements.

On the other hand, concrete semantics refers to
those for which the implementation is very low-level
or operating system related, such as the calculation
of two complex objects (e.g. two matrices) or any
I/O operation. Such semantics is difficult to be
specified by formal methods and can make
specification quite complex and low-level. However,
this semantics is easier to be implemented by GPL
directly. So our goal is to separate the abstract
semantics with concrete semantics and to have them
specified and implemented by TLG and Java,
respectively. We will elaborate this in the following
sections.

3. OVERVIEW

Figure 1 provides the control flow of
programming language implementation in this
framework. Tools are shown in ellipses. Shaded
boxes contain generated code. Arrows denote
control flow. To describe a language, the user
specifies the lexical, syntactic rules and abstract

TLG
Specification

TLG
Compiler

CUPJLex

Lexer in Java Parser in Java

JLex Specification
(Lexical Rules)

CUP Specification
(Syntax Rules)

Abstract
Semantics

in Java

Concrete
Semantics

in Java

javac

Interpreter in
Java Byte Code

User-supplied
Java Code

Input
Term

Output
Term

JVM

Fig. 1 Language implementation overview

Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 7

semantics for each grammar symbol (terminal or
nonterminal symbol) with a single TLG class. The
framework takes the TLG class file as input, and
extracts lexical rules and syntax rules, which will be
compiled by the lexer generator JLex [8] and parser
generator CUP [9], respectively, to generate the
corresponding lexer and parser in Java, respectively.
Meanwhile, Java classes and interfaces for
nonterminals are generated and class structures
(class names, method signatures, etc.) for terminals
are generated into two separated files. Users can
later add Java code for concrete semantics analysis
into the second file, which is the only file users need
to manage in the programming language level. Once
the lexer, parser and semantics in Java are compiled
together (using javac), an interpreter in Java byte
code is produced. The relationship among lexer,
parser and semantics Java classes is as follows: the
parser takes tokens produced by the lexer as input,
creates semantic objects of Java classes, and builds
Abstract Syntax Tree (AST) by calling the
construction methods of these objects.

4. OBJECT-ORIENTED MODULARIZATION

Fig. 2 The context-free grammar of Sam

To design the TLG specification in this

framework, we apply the interpreter pattern [4],
treating each grammar symbol as a class. For
illustrative purposes, we will explore how the
framework models grammars based on a sample
language named Sam, which is a very simple
language for specifying computations involving
integer arithmetic only. Figure 2 is the context-free
grammar of the Sam language. Symbols in bold
stand for terminals, in which quoted strings and
characters stand for keywords/meta-
symbols/operators, integer and id stand for integer
values and identifiers, respectively. The other
symbols are nonterminals.

Nonterminal symbol classes: Each nonterminal
symbol must have an associated class. For each
production rule in the form of R ::= R1 R2 ... Rn, we
create a class for the left-hand-side (LHS)
nonterminal R, and specify the syntax rule using the

TLG keyword Syntax followed by the right-hand-
side (RHS) of the production R1 R2 ... Rn. The syntax
will not only help direct the grammar specification
in CUP but also generate constructor methods of
each Java class to store the instance variables of R1
R2 ... Rn. For example, the TLG class for nonterminal
Binary_expression:

nonterminal Binary_expression.
Syntax :: Expression1 Binary_operator

Expression2.
//semantics analysis

end nonterminal.

will generate the following constructor in the Java
class:

class Binary_expression{

Expression expression1;
Binary_operator binary_operator;
Expression expression2;

Binary_expression(

Expression expression1,
Binary_operator binary_operator,
Expression expression2){ program ::= declaration-list statement-list

declaration-list ::= declaration | declaration-list declaration
declaration ::= id �=� integer-list �;�
integer-list ::= integer �,� integer-list | integer
statement-list ::= statement-list | statement-list statement �;�
statement ::= assignment-statement | print-statement
assignment-statement ::= id �:=� expression
print-statement ::= �print� expression
expression ::= term | binary-expression | unary-expression
binary-expression ::= expression binary-operator expression
unary-expression ::= unary-operator term
term ::= id | integer | parentheses-expression
parentheses-expression ::= �(� expression �)�
binary-operator ::= �+� | �-� | �*� | �/�
unary-operator ::= �+� | �-�

this. expression1=expression1;
this. binary_operator = binary_operator;
this. expression2=expression2;

}
//semantic analysis

}

The semantics of R is represented by the keyword
semantics, followed by the semantics operations of
R1 R2 ... Rn, and in the generated Java code,
semantics implementation is obtained by applying
method semantics() iteratively on the instance
variables representing R1 R2 ... Rn For example, the
semantics for nonterminal program in Sam will be
composed by the semantics of nonterminal
declaration-list and statement-list. However, the
nonterminals can directly delegate the
responsibilities of implementing concrete semantics
to terminals as well, as described in the next secion.

Notice that if a nonterminal is the LHS of several
different productions, then all the corresponding
productions should be unit productions [10], i.e.
only one RHS variable in the production (if there
exists a non-unit production for this nonterminal, we
can easily eliminate it by rewriting the original
grammar). We make the LHS variable as a super
class (i.e. interface in Java), with each RHS variable
as its subclass. Since interfaces can�t be initialized in
Java, all the semantics of this super class will be
completely implemented by its subclasses. This
technique reduces the number of the generated AST
nodes and provides a proper level of abstraction for
those LHS nonterminals, as illurstrated in Figure 3,
where the AST of a print statement �print a� is
presented with shaded boxes represent the actual
AST nodes.

8 Object-Oriented Pattern-Based Language Implementation

Fig. 3 The AST for a print statement

Terminal symbol classes: Each terminal symbol in
a grammar may have its own class. The lexical rule
for each terminal is defined in its own class using
keyword Lexeme followed by the quoted regular
expression of the symbol. However, to avoid
creating too many terminal classes, we can only
specify the lexeme of those non-trivial tokens using
a class. Here non-trivial tokens refer to the
semantics-related tokens such as Identifier, Integer,
Operator, etc. Trivial tokens are those that have no
significant semantics contributions, such as meta-
symbols, whose lexeme can be specified in the
syntax of its parent class. The semantics interface
associated with terminal symbols is also introduced
in the terminal class followed by hyper-level
keyword semantics. A corresponding Java class
interface is generated, into which user can add
concrete Java code directly. For example, the binary
operator �+� in Sam will have the following TLG
class:

terminal PLUS.
Lexeme :: �+�.
semantics with Expression1 and Expression2.

end terminal.

Notes: The generated Java class of this TLG class
will contain an interface of a method for concrete
semantics implementation in Java, with Expression1
and Expression2 as parameters (their types are both
Expression).

The use of the interpreter pattern has the

following two benefits: firstly, it is easy to change
and extend the grammar. As each grammar is
composed by a number of terminals and
nonterminals, the designer can always modify the
grammar by class manipulation or extend the
grammar using inheritance. Secondly, implementing
the grammar becomes much easier. In our
specification, each AST node is represented by a
TLG class. The semantics part is easy to write node
by node and the generation of the corresponding
Java objects can be automated with a parser
generator, such as CUP. Besides the above two
benefits, we also make some adaptation on the basis
of the sample approach introduced in [4]: first,
instead of using recursive-descent parsing [10], we
reuse the lexer and parser generator components
JLex and CUP to generate a bottom-up parser, and

then traverse the generated abstract syntax tree to
implement semantics. Thus we leverage the LALR
(1) parsing power of bottom-up parsing and the
natural traversal property of top-down semantic
analysis. Secondly, we create classes for
nonterminals and terminals in contrast to the
approach in [4] of creating classes for productions.
Therefore, we can delegate concrete semantics of
the nonterminals to terminal classes to separate the
formal and informal concerns of semantic analysis
and we only need to add Java code to terminal
classes, which is in a separated file. This actually
solves the major drawback for the interpreter
pattern, namely that too many classes are to be
managed by the user.

expression

term

id(a)

print-statement

print

5. SEPARATION OF FORMAL AND

INFORMAL SEMANTICS

As described before, the Java codes generated
from TLG can be used to build the AST by the calls
to the constructor methods. This tree is built during
parsing and the calls to constructors are embedded
as the action codes [9] following each production of
the CUP file. For instance, the production and action
code for print-statement in CUP is as below:

....
print_statement ::=

PRINT : PRINT expression : expression
{:

RESULT = new
Print_statement (PRINT , expression);

:};
...

In some interpreter generation approaches such as

SableCC [11] and JJForester [12], once the AST is
built, semantic actions will be added to every AST
node and the interpreter or compiler is implemented
by iterative traversal of this tree. However, this kind
of method tangles the abstract semantics and
concrete semantics together and breaks the formal
property of the AST. As a result, the syntax
grammar is bounded by embedding the semantic
actions and hard to be extended or reused.

Another drawback of the traditional method is
that the formal specification of those concrete
semantics is very low-level and hard to read. For
example, in a grammar production for doing I/O
operations, the specification should be used to
implement the input or output with the environment,
which is operating system related; in an expression
for addition calculation, specification may be used to
deal with calculating the sum of two expression
values. It is not hard for a formal specification to
handle addition of two integers, however, the
specification will be quite complicated when facing
the addition of two matrices unless some additional
functions are pre-defined in the formal specification
on demand. This hampers the designer in reusing
any implementation components of an existing
language as they are bounded by low-level domain-

Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 9

related details. For example, the designer of a
matrices calculator can take no benefits from the
existing implementation of an integer calculator
although they share quite a few syntax productions.

In order to address these problems, we apply the
chain of responsibility design pattern [4] in the AST
to recursively throw the responsibilities of
implementing concrete semantics from the upper
nodes to the lower nodes, until they reach the leaf
nodes, i.e., nodes for terminal symbols. The
applicability of this delegation method is explored
below. Given a program written in a certain
language, each concrete semantics operation is
actually represented and distinguished from each
other by at least one terminal symbol. For example,
an I/O operation is indicated by terminal �print� and
a requirement of addition is expressed by terminal
�+�. Since each semantic action is represented by a
terminal such as �print� or �+�, it is applicable for
the concrete semantics operating on nonterminal
nodes to finally find a terminal node to delegate the
analysis responsibility. Even if no such terminal
node can be found or the path between the
nonterminal node and the terminal node is too long,
we can introduce a dummy terminal, which has no
lexeme at all and is only used to delegate the
concrete semantics. This idea is actually similar to
the well know mechanism of inserting markers in
the attribute grammar [10].

Figure 4 is the partial UML diagram of the
generated Java classes. Since we separated the
concrete semantics with abstract semantics, we keep
all the middle nodes (nodes for nonterminals)
abstract and formal, and leave the concrete and
informal semantics implementation to terminal
nodes. For example, the TLG classes for

nonterminal print-statement and terminal �print� in
Sam can be as following:

nonterminal print_statement.
Syntax :: PRINT Expression.
semantics : PRINT with Expression.

end nonterminal.

Notes: nonterminal print-statement delegates the
concrete semantics to terminal PRINT with
Expression as the parameter.

terminal PRINT.
Lexeme :: �print�.
semantics with Expression.

end terminal.

Notes: The generated Java class of this TLG class
will contain an interface of a method for concrete
semantics implementation in Java, with Expression
as the parameter of the method.

Now the user only needs to add concrete
semantics into all the generated terminal classes
(represented by gray boxes in Figure 4), using the
full-featured operation library of Java. Continuing
with the above example, the completed Java class
for PRINT is:

class PRINT{
public void semantics(Expression expression){
 System.out.println(

Print_statement

semantics()

Expression

semantics()

Print

semantics()

Term

semantics()

Binary_expression

semantics()

Plus

semantics()

Integer

semantics()

Parentheses_expression

semantics()

Minus

semantics()

Binary_operator

semantics()

((Integer)expression).intValue());
}

}

If we want to modify the language to make it
handle matrix computation instead of integer
computation, we need to make some adaptation to
the semantics since there are different calculation
methods and I/O strategies applied to integers and
matrices. In our approach, we only need to rewrite
the terminal Java classes to achieve this adaptation.
As in Figure 4, we only need to rewrite the Java
classes of leaf nodes represented by the gray-boxes,
e.g. Print, Integer and Plus with the middle nodes
intact. In the case of terminal class Print, the new
semantics class could be as below:

class PRINT{

public void semantics(Expression expression){
 DecimalFormat fmt =

new DecimalFormat ("0.##");
System.out.println();
for(int i=0;i<matrix.getRowNum();i++){ Fig. 4 Partial UML diagram of the generated

Java classes for(intj=0;j<matrix.getColumnNum();j++){
System.out.print(fmt.format(
matrix.getFloat(i,j).floatValue())+" \t");

}
System.out.println();

}
System.out.println();

}
}

10 Object-Oriented Pattern-Based Language Implementation

In our real implementation of this language, we
utilized lots of existing Java APIs, such as ArrayList
to store the matrix value and we used Java applets
for polished output of the matrices.

6. SIGNIFICANCE

With the help of T-Clipse [13], which is an

Integrated Development Environment (IDE) for two-
level grammar based on the Eclipse framework [14],
we have developed an interpreter for the Sam
language. Then we reused the Sam specification to
quickly develop a language called BasicM for matrix
calculation, as well as reusing the interpreter for
Sam to build an interpreter for BasicM. Our
experience in developing these two languages show
that our approach does improve the readability,
extendibility and reusability, as described below:

Readability. The TLG classes embrace a one
to one mapping with grammar symbols (except
the punctuation such as comma or semicolon).
Each grammar symbol�s lexical/syntax rules
and semantics are all defined in the same class,
which is easy to read. In the TLG level, we
only specify the abstract semantics in TLG
classes, which makes the formal specification
concise; in the Java code level, the user only
needs to manage the file that contains terminal
Java classes. This reflects the separation of
concerns principle in software engineering.

Extendibility. Adding another output operation
in this language (e.g. output to a window
instead of the console) can be achieved by
make the terminal PRINT as a nonterminal, i.e.
make it abstract, and let two new terminal
classes named GUIPRINT and BASICPRINT to
extend PRINT as in Figure 5. Terminal
BASICPRINT can reuse the semantics
component for original terminal PRINT. In this
manner, to extend the output statements, user
only needs to write a semantics class for
terminal GUIPRINT.

Reusability. Swithing the domain of
expressions from integer calculation to matrix
calculation can be achieved as below. A new
grammar symbol Matrix is created, which is

composed by some nonterminals and terminals,
and replace the Integer class in the TLG level
to regenerate the lexer, parser and abstract
semantics (nonterminal Java classes) for the
new language. To maximize the reuse of the
concrete semantics components, only the Java
classes of new terminals are automatically
regenerated, while the Java classes of existing
terminals are changed manually, which is the
same approach used in JavaCC when
regerating AST node classes[15].

7. RELATED WORK

Many researchers are working on object-oriented
modular specifications from which compilers or
interpreters can be automatically produced. Java
Comiler Compiler (JavaCC) [15] is a Java parser
generator written in the Java programming language.
JavaCC integrates lexical and grammar
specifications into one file to make specification
easier to read and maintain. Combined with tree
generators such as JJTree [16] or Java Tree Builder
[17], it can be used to generate object-oriented
interpreter/compilers. JavaCC (together with the tree
generator) use the Visitor pattern [4] for tree
traversal. However, JavaCC cannot handle left
recursive grammars since it only generates
recursive-descent parsers, which are less expressive
than LALR(1) parsers. Another drawback of JavaCC
is that the Visitor pattern is only applicable when the
grammar is rarely changed because changing the
grammar requires redefining the interface to all
visitors, which is potentially costly [4]. This
provides bad reusability for the specifications.

The ASF+SDF Meta-Environment [18] is an
environment for the development of language
definitions and tools. It combines the syntax
definition formalism SDF with the term rewriting
language ASF. SDF is supported with Generalized
LR (GLR) parsing technology. ASF is a rather pure
executable specification language that allows rewrite
rules to be written in concrete syntax. However,
though ASF is good for the prototyping of language
processing systems, it lacks some features to build
mature implementations. For instance, ASF does not
come with a strong library mechanism, I/O
capabilities, or support for generic term traversal
[12]. As a major step to alleviate these drawbacks,
JJForester [12] was implemented, which combined
SDF with the general purpose programming
language Java. However, again, it has the same
drawback as JavaCC as it uses the Visitor pattern for
tree traversal.

The LISA system [19] is a tool for automatic
language implementation in Java. LISA uses well-
known formal methods, such as regular expressions
and BNF for lexical and syntax analysis, and use
attribute grammar to define semantics. LISA
provides reusability and extendibility by integrating
the key concepts of object-oriented programming,
i.e. templates, multiple inheritance, and object-
oriented implementation of semantic domains [3].

PRINT

semantics()

BASICPRINT

semantics()

GUIPRINT

semantics()

Fig. 5 Extend the output function of Sam

Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 11

Our major distinction with all the above research
is as follows:

As we use TLG to encapsulate the lexical,
syntactic rules and semantics of each grammar
symbol in a single class based on an object-
oriented manner, we provide good
modularization for grammar components
making them easily extendible and reusable.

We successfully separate the formal concerns
and informal concerns in language
implementation, and combine the feature of
automatic code generation from formal
specification with the massive library of classes
in Java, to precisely specify syntax and
semantics and minimize complexity in the use
of formal methods.

We separate the parsing from semantics
analysis, realizing bottom-up parsing and top-
down semantics analysis. The LALR(1) [10]
parsing power and the natural property of
recursive descent semantics analysis are
combined together.

An additional benefit in our approach which is not

discussed in this paper is the TLG specification�s
strong computation power compared to other formal
methods [20], e.g. TLG can specify the semantics of
a loop statement in programming languages while
attribute grammar cannot.

8. CONCLUSION & FUTURE WORK

In this paper, with an aim to provide good

modularization and abstraction for formal
specification in programming language description,
Two-Level Grammar is introduced as an object-
oriented formal specification language for modeling
language components and constructs. Some software
design patterns are also applied to help with the
organization of the TLG classes and separate the
informal concerns from formal concerns in language
implementation. Therefore, we provide good
modularity, readability, reusability and extendibility
for TLG specification while leveraging mature
programming language technology such as Java,
thereby achieving our research objectives.
Therefore, our approach offers a means to take
advantage of the synergy between formal methods
and general programming languages. The benefits of
using our approach have been demonstrated by a
sample language.

Besides the interpreter pattern and chain-of-
responsibility pattern we described in the paper,
there are other possible patterns that could be
applied in this framework For example, the
generated AST is actually an instance of the
Composite pattern [4], with the terminal classes as
leaf, and the nonterminal classes as composite.
Another pattern we are interested to use in the future
is Mediator pattern [4]. Once the grammar becomes
large, it is quite common that non-local dependency

[21] will appear, which means that the semantics of
one AST node is dependent on another node which
is contained in another sub-tree, such as the name
analysis problem where properties of an identifier
use site depends on properties of an identifier
declaration site. Attribute grammar uses a
propagating method to deliver related attributes
through the path of linked nodes. This is obviously
inefficient and Hedin has listed four drawbacks of
this kind of approach in [22]. Our current practice is
to forward the reference of one object to the others
by the common ancestor of two node objects, which
is similar to Hedin�s reference attribute grammar.
However, our strategy is still not as efficient as
desired and complicates the formal specification
somewhat. We found that the Mediator pattern is
well suited to solve this problem as its applicability
is to the situation when a set of objects have to
communicate in complex ways and the
interdependencies are unstructured and difficult to
understand. So, for AST nodes that need to
communicate to other ones far away, we could
create a mediator for them to communicate with.
The major challenge is it is hard to design an
algorithm for dynamically creating mediators for
objects, since the AST is only built dynamically
during parsing. We are still working on this.

REFERENCES

[1] F. G. Pagan. Formal Specification of

Programming Languages: A Panoramic
Primer. Prentice Hall, 1981.

[2] K. Slonneger, B. L. Kurtz. Formal Syntax and
Semantics of Programming Languages.
Addison-Wesley, 1995.

[3] M. Mernik, M. Leni , E. Avdi au�evi , V.
�umer. A Reusable Object-Oriented Approach
to Formal Specifications of Programming
Languages. L'Objet Vol. 4, No. 3, pp. 273-306,
1998.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] B. R. Bryant, B.-S. Lee. Two-Level Grammar
as an Object-Oriented Requirements
Specification Language. Proceedings of 35th
Hawaii Intl Conf. System Sciences, 2002.
http://www.hicss.hawaii.edu/HICSS_35/HICSS
papers/PDFdocuments/STDSL01.pdf

[6] A. van Wijngaarden. Revised Report on the
Algorithmic Language ALGOL 68. Acta
Informatica, Vol. 5, pp. 1-236, 1974.

[7] B. R. Bryant, A. Pan. Formal Specification of
Software Systems Using Two-Level Grammar.
Proc. COMPSAC �91, 15th. Intl. Computer
Software and Applications Conf., pp.155-160,
1991.

[8] JLex: Java Lexical Analyzer Generator.
http://www.cs.princeton.edu/~appel/modern/ja
va/JLex/

12 Object-Oriented Pattern-Based Language Implementation

[9] CUP: Parser Generator for Java.
http://www.cs.princeton.edu/~appel/modern/ja
va/CUP/

[10] A. V. Aho, R. Sethi, J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-
Wesley, 1988.

[11] E. Gagnon. SableCC, An Object�Oriented
Compiler Framework. Master�s thesis, McGill
University, Montreal, Quebec, March 1998.

[12] T. Kuipers, J. Visser. Object-Oriented Tree
Traversal with JJForester. Electronic Notes in
Theoretical Computer Science, Vol. 44, 2001.

[13] B.-S. Lee, X. Wu, F. Cao, S.-H. Liu, W. Zhao,
C. Yang, B. R. Bryant, and J. G. Gray. T-
Clipse: An Integrated Development
Environment for Two-Level Grammar.
Proceedings of OOPSLA03 Workshop on
Eclipse Technology eXchange, 2003.

[14] Object Technology International, Inc. Eclipse
Platform Technical Overview, February 2003

[15] JavaCC: Java Compiler Compiler, Sun
Microsystems, Inc. https://javacc.dev.java.net/

[16] Introduction to JJTree. http://www.j-
paine.org/jjtree.html

[17] JTB: Java Tree Builder
http://www.cs.purdue.edu/jtb/releasenotes.html

[18] M. G. J. van den Brand, J. Heering, P. Klint
and P.A. Olivier. Compiling Language
Definitions: The ASF+SDF Compiler. ACM
Transactions on Programming Languages and
Systems, 24(4): 334-368, 2002.

[19] M. Mernik, V. �umer., M. Leni , E.
Avdi au�evi . Implementation of Multiple
Attribute Grammar Inheritance In The Tool
LISA. ACM SIGPLAN Not., Vol. 34, No. 6,
June 1999, pp. 68-75.

[20] M. Sintzoff. Existence of van Wijingaarden�s
Syntax for Every Recursively Enumerable Set,
Ann. Soc. Sci. Bruxelles, Vol. 2, pp. 115-118,
1967.

[21] J. T. Boyland. Analyzing Direct Non-Local
Dependencies In Attribute Grammars. Proc.
CC �98, International Conference on Compiler
Construction, Springer-Verlag Lecture Notes in
Computer Science, Vol. 1383, pp. 31-49, 1998.

[22] G.. Hedin, Reference Attributed Grammars, in
D. Parigot and M. Mernik, eds., Second
Workshop on Attribute Grammars and their
Applications, WAGA'99, Amsterdam, The
Netherlands, (1999), 153-172. INRIA
Rocquencourt.

BIOGRAPHY

Xiaoqing Wu is a Ph. D. student in the Computer
and Information Sciences Department at the
University of Alabama at Birmingham. His research
is focusing on compiler design, programming
languages, formal specification and software
engineering.

Barrett R. Bryant is a Professor and the Associate
Chair in the Department of Computer and
Information Sciences at the University of Alabama
at Birmingham (UAB). He joined UAB after
completing his Ph. D. in computer science at
Northwestern University in 1983. He has held
various visiting positions at universities and research
laboratories since joining UAB. Barrett's primary
research focus is in theory and implementation of
programming languages, especially formal
specification languages, and object-oriented and
component-based software technology.

Marjan Mernik received his M.Sc. and
Ph.D.degrees in computer science from the
University of Maribor in 1994 and 1998
respectively. He is currently an associate professor
at the University of Maribor, Faculty of Electrical
Engineering and Computer Science. He was a
visiting professor in the Department of Computer
and Information Sciences at the University of
Alabama at Birmingham in 2004. His research
interests include principles, paradigms, design and
implementation of programming languages,
compilers, formal methods for programming
language description, and evolutionary
computations. He is a member of the IEEE, ACM
and EAPLS.

