
16 Acta Electrotechnica et Informatica No. 1, Vol. 4, 2004

STATIC WEAVING AT DYNAMIC JOIN POINTS

Ján KOLLÁR, Valerie NOVITZKÁ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Ko�ice, Letná 9, 042 00 Ko�ice, Slovak Republic,
tel. +421 55 602 2577, +421 55 602 4182, E-mail: Jan.Kollar@tuke.sk, Valerie.Novitzka@tuke.sk

SUMMARY
Aspect oriented programming is a programming methodology based on separating concerns (aspects) of computation,

describing them separately in the form of advices that are applied in clearly selected set of points of a program using
pointcut designators. In this paper we will present an approach to the implementation of crosscutting concept of aspect
oriented programming using environmental basis of PFL - a process functional programming language. We will concentrate
on the advices, defined by pointcut designators with temporal logic operations. We also introduce possible directions in
further conceptual solutions based on process functional paradigm.

Keywords: programming paradigms, process functional programming, aspect oriented programming, dynamic join points,
advice implementation

1. INTRODUCTION

Aspect oriented programming [1, 2, 3, 6, 7, 8,
31] is the desire to make programming statements of
the form: In programs P, whenever condition C
arises, perform action A over conventionally coded
programs P. Thus, in aspect oriented programming
we want to be able to say, �This code realizes this
concern. Execute it whenever these circumstances
hold.� This breaks completely with local and unitary
demands � we can organize our program in the form
most appropriate for coding and maintenance. We
do not even need the local markings of cooperation.
The weaving mechanism of the aspect system can,
by itself, take our quantified statements (advice) and
the base program and produce the primitive
directions to be performed. A characteristic of
aspect-oriented programming, as embodied in
AspectJ [6, 7], AspectCOOL [2, 3], Aspect BASE
[31] and other aspect languages is the use of advice
to incrementally modify the behavior of a program.
An advice declaration specifies an action to be taken
whenever some condition arises during the
execution of the program. The events at which
advice may be triggered are called join points. Join
points are dynamic if they refer to events during
execution, otherwise they are static. The process of
executing the relevant advice at each join point is
called weaving. The condition is specified by a
formula called a pointcut designator. In this paper
we illustrate crosscutting concept of aspects oriented
programming using simple Wand�s example taken
from [31], expressing it in PFL � a process
functional language, having been developed at the
Department of Computers and Informatics [9, 10,
11, 12, 13, 14, 21, 22, 25, 26, 27]. *

Process functional paradigm is based on
evaluation of processes that affect the memory cells

* This work was supported by VEGA Grant No.
1/1065/04: Specification and Implementation of
Aspects in Programming.

by their applications. PFL - an experimental process
functional language, aimed to von Neumann
machines comes from the Haskell concept of pure
functional languages [20], including an imperative
feature of manipulating programming environments
[4, 14], however, neither in monadic manner [19,
30] nor in an assignment based manner. Instead of
this, we introduce pure functional form for function
definition and type definition of this function
including the environment variables to be input
memory places for a subset of formal parameters.
Such structuring of a program means that the
function of computation is free of an undisciplined
memory access and unexpected affecting by side
effects.

We attend, that separating concerns of memory
access/update and function of computation, both
concerns � or aspects of computation remain
mutually dependent.

In essence, the notion of functionality is relative.
These days, mechanisms that deal with concurrency
and failures are, for instance, considered as non-
functional aspects of the application. It is tempting
to separate these aspects from the other
functionalities of the application [8].

On the other hand, aspect programming is based
on weaving different aspects, and it would be
imposible, if aspects are fully independent. That is
why instead of thinking about their independency we
must find the simpliest and the most general rule for
expressing their dependence.

We mention that this orientation of research is
possible and useful for recognizing what aspects in
programming can be considered and how to exploit
them.

2. PFL CONCEPTION

Let us introduce an example 2.1 of a simple
purely functional program comprising a pure
function p of three arguments, which value is
defined by an expression e.

Acta Electrotechnica et Informatica No. 1, Vol. 4, 2004 17

Example 2.1 Purely functional program

p :: T1 -> T2 -> T3 -> T
p x x1 2 x3 = e

main = print (p e1 e2 e3)

For the purpose of simplicity, let print is a

built-in function of the type T->() that prints the
value of its argument and main is the main
function, which starts the evaluation. Evaluating
main, the application (p e1 e2 e3) is evaluated
and its value e[e1/x1,e2/x2,e3/x3] is printed.

The type definition of PFL process comprises
environment variables, such as v1, v2 and v3 in the
example 2.2.

Example 2.2 PFL program illustrating the update

p :: v T1

p x
1 -> v2 T2 -> v3 T3 -> T

1 x2 x3 = e

main = print (p e1 e2 e3)

Evaluating main, the printed value is again

e[e1/x1,e2/x2,e3/x3] and the evaluation
performs three side effects � it stores e1 to v1, e2

to v2, and e3 to v3. These side effects are performed
before expression e is evaluated. The example 2.2
illustrates the update of environment variables not
using them in expressions.

Finally, we will show the access of environment
variables. Let seq is binary sequencing operation of
the type ()->()->(), which guarantees the first
argument is evaluated before the second argument.
According to the example 2.3 the value of
application will be printed twice.

Example 2.3 PFL program illustrating the access

p :: v1 T1 -> v2 T2 -> v3 T3 -> T
p x x1 2 x3 = e

main = seq (print (p e1 e2 e3))
 (print (p () e4 ()))

The first printed value is as before, i.e. it is

e[e1/x1,e2/x2,e3/x3]

The second printed value is as follows:

e[e1/x1,e4/x2,e3/x3]

It means that the application (p () e4 ())
performes the access of the values e1, and e3 having
been stored already in v1 and v3, as a result of
preceding application (p e1 e2 e3).

Let us designate our applications by numbers, as
follows:

(1) (p () e4 ())
(2) (p e1 e2 e3)

The state change is as follows:

v1[] ,v2[] ,v3[]
(1) v1[e1],v2[e2],v3[e3]
(2) v1[e1],v2[e4],v3[e3]

where vi[]designates undefined value stored in
the variable vi, vi[ek] designates value ek stored
in the variable vi., and (a) means the transition
caused by application (a).

Of course, it is possible to show state changes on
separate variables:

v1[] (1) v1[e1]

v2[] (1) v2[e2] (2) v2[e4]

v3[] (1) v3[e3]

Omitting the details on PFL semantics, we can
summarize the following facts:

1. We never use environment variables in PFL

expressions, still being able to access and/or to
update the variables.

2. We may use an environment variable for any
argument type, not however for the value type in
type definitions of processes.

3. We may say: Provided that an argument type of a
function in its type definition �comprises� an
environment variable, then this function becomes
the process which application affects the state of
computation.

But the last statement is very near to aspect

approach, since each process realises the concern of
memory access/update whenever it is applied.

We will discuss the variety of PFL ability for
aspect oriented development later.

In the next section we introduce Wand�s
conception of aspect methodology, as incorporated
in Aspect BASE and its relation to our approach.

3. ADVICES IN ASPECT BASE AND PFL

In AspectJ model [6, 7], a program consists of a
base program and some pieces of advice. The
program is executed by an interpreter. When the
interpreter reaches certain points, called join points,
in its execution, it invokes a weaver, passing to it an
abstraction of its internal state (the current join
point). Each advice contains a predicate, called a
pointcut designator (pcd), describing the join points
in which it is interested, and a body representing the
action to take at those points. It is the job of the
weaver to demultiplex the join points from the
interpreter, invoking each piece of advice that is
interested in the current join point and executing its

18 Static Weaving at Dynamic Join Points

body with the same interpreter. The concept of
aspect BASE language [31], related to AspectJ
model above, is as follows:

First, when a piece of advice is run, its body
may be evaluated before, after or instead of the
expression that triggered it; this specification is
part of the advice. In the last case, called an
around advice, the advice body may call the
primitive proceed to invoke the running of any
other applicable pieces of advice and the base
expression.
Second, the language of predicates is a temporal
logic, with temporal operators such as cflow.
Hence the current join point may in general be
an abstraction of the control stack.
Each advice body is also interpreted by the
same interpreter, so its execution may give rise
to additional events and advice executions.
Last, the set of advice in each program is a
global constant.

Coming out from Wand�s �Binding variables

with cflow� example as introduced in [31], we will
show how PFL programs can be aspectized using
the environmental conception of PFL language.

Let us have the PFL program introduced in the
example 3.1.

Example 3.1 Source PFL program

foo n = fac n

fac 0 = 1
fac (n + 1) = (n + 1) * fac n

main = print (fac 6 + foo 4)

which, when executed, will print on the screen the
number 744.

Let us require:

For each application fac y, such that it is �called�
from foo x, the advice action (print x ; print y) is
performed.

It means that we need an advice, which yields the
following result on the screen:

4 4 4 3 4 2 4 1 4 0 744

In terms of Aspect BASE, instead of modifying
the source program above, we define this condition
separately using pointcut designator as follows:

before (fac y) cflow (foo x)
 (print x ; print y)

Provided that (<<) corresponds to Wand�s

before and (->) to cflow operation, the

corresponding PFL form of advice would be as
follows:

advice x y =
(print x ; print y)<<foo x->fac y

So, aspectized source form is introduced in

example 3.2, as follows

Example 3.2 Aspectized source PFL program

-- PFL Language
foo n = fac n

fac 0 = 1
fac (n + 1) = (n + 1) * fac n

main = print (fac 6 + foo 4)

-- Language of advices
advice x y =
 (print x; print y)<<foo x->fac y

In the example above the first part is written in
PFL language, but the second part in a hypothetical
language of advices, with a very different semantics.
Informally, advice is rather a macro than function
definition, arguments of print are not lambda
variables of advice but they are arguments of foo
and fac, respectively. Seemingly the action
(print x; print y) that is applied just if
fac application is �reachable� by foo application
needs manipulating control stack in run-time.

Sofar, using current implementation of PFL we
expressed just advices for positional operations such
as before that may be evaluated statically, not the
advices selected for dynamic join points that require
run time application of temporal operations, such as
cflow, designated by (->). In this paper we will
show that static solution for dynamic join points is
still possible.

To compare weaving based on stafic and
dynamic join points definitions, let us introduce first
the advice which determines static position of action
applied before fac occuring in foo, as follows:

advice x y =
(print x; print y)<< fac y in foo x

This advice, comprising positional operation in,
can be translated into PFL advice process, as
follows

advice :: u Int -> v Int -> ()
advice x y = print x ; print y

which becomes a part of woven form of PFL
program, according the example 3.3.

Example 3.3 Woven PFL program � static join
point

Acta Electrotechnica et Informatica No. 1, Vol. 4, 2004 19

sfac :: v Int -> ()
sfac x = ()

foo :: u Int -> Int
foo n = fac (sfac n; advice ()())

fac :: v Int -> Int
fac 0 = 1
fac (n + 1) = (n + 1) * fac n

main = print (fac 6 + foo 4)

advice :: u Int -> v Int -> ()
advice x y = print x ; print y

Evaluating main, we obtain the next output on

the screen:

4 4 744

In example 3.3, we use the environment variable

v to store argument of fac and u to store the
argument of foo. The application (sfac n) in
foo stores the value n temporarily and both u and
v values are acccessed by the application

(advice ()())

in foo. Notice also that the value of

(sfac n; advice ()())

is (), hence fac (sfac n; advice ()()) is
equal to (fac ()), but, since accessed value is n,
it is equal to (fac n).

In the next section we will develop the solution

for dynamic join points in PFL.

4. DYNAMIC JOIN POINTS

The result having been reached in execution of

main in the example 3.3, is more visible
considering the state of call stack, which is as
follows:

[main]
-- evaluation of fac 6
[main,fac]
 ········
[main,fac,fac,fac,fac,fac,fac]
[main,fac,fac,fac,fac,fac,fac,fac]
[main,fac,fac,fac,fac,fac,fac]
········
[main,fac]
[main]
-- evaluation of foo 4
[main,foo]
[main,foo,• fac]
[main,foo,fac, 1 fac]
[main,foo,fac,fac, 2 fac]
[main,foo,fac,fac,fac, 3 fac]

[main,foo,fac,fac,fac,fac, 4 fac]
[main,foo,fac,fac,fac,fac]
[main,foo,fac,fac,fac]
[main,foo,fac,fac]
[main,foo,fac]
[main,foo]
[main]

The action (print x; print y) performed
in the join point marked by � yields 4 4, on the
screen.

The same action in join point 1 would yield 4 3
on the screen, in 2 would yields 4 2, etc., and
finally the action 4 yields 4 0. Unfortunately, join
points, marked by 1, 2, 3, and 4 cannot be
selected using static positional operations such as
in.

To explain this more precisely, let us consider
the advice

advice x y =
 (print x; print y)<<foo x->fac y

again and prove that program in the example 4.1 is
woven incorrectly for this advice.

Example 4.1 Incorrectly woven PFL program

sfac :: v Int -> ()
sfac x = ()

foo :: u Int -> Int
foo n = fac (sfac n; advice ()())

fac :: v Int -> Int
fac 0 = 1
fac (n + 1) =
 (n + 1)*fac(sfac n; advice ()())

main = print (fac 6 + foo 4)

advice :: u Int -> v Int -> ()
advice x y = print x ; print y

Then the result does not conform to our advice,

since it is as follows:

 5 4 3 2 1 0

4 4 4 3 4 2 4 1 4 0
744

where the first line of numbers comes from the
application fac 6, the second line from foo 4,
and the number 744 from print application in
main.

This incorrect weaving would mean that the state

of the call stack during evaluation is as follows:

[main]
-- evaluation of fac 6
[main,fac]

20 Static Weaving at Dynamic Join Points

[main,fac, fac]

[main,fac,fac, fac]

[main,fac,fac,fac, fac]

[main,fac,fac,fac,fac, fac]

[main,fac,fac,fac,fac,fac, fac]

[main,fac,fac,fac,fac,fac,fac, fac]
[main,fac,fac,fac,fac,fac,fac]
········
[main,fac]
[main]
-- evaluation of foo 4
[main,foo]
[main,foo,•fac]
[main,foo,fac,•fac]
[main,foo,fac,fac,•fac]
[main,foo,fac,fac,fac,•fac]
[main,foo,fac,fac,fac,fac,•fac]
[main,foo,fac,fac,fac,fac]
[main,foo,fac,fac,fac]
[main,foo,fac,fac]
[main,foo,fac]
[main,foo]
[main]

Correct join points are marked by •, and

incorrect by . Incorrectly selected join points cause
the output

 5 4 3 2 1 0

attempting even to print yet undefined value of
argument of foo.

Correct solution for dynamic join points can be

still found based on tracing control flow statically.
This tracing leads to a new aspectized copy ffac
derived from fac and applied in foo, as shown in
the example 4.2.

Example 4.2 Correctly woven PFL program

sfac :: v Int -> ()
sfac x = ()

foo :: u Int -> Int
foo n = ffac (sfac n;advice ()())

ffac :: v Int -> Int
ffac 0 = 1
ffac (n + 1) = (n + 1)*
 ffac (sfac n; advice ()())

fac :: Int -> Int
fac 0 = 1
fac (n + 1) = (n + 1) * fac n

main = print (fac 6 + foo 4)

advice :: u Int -> v Int -> ()

advice x y = print x ; print y

The woven PFL program in example 4.2 is the
result of weaving PFL program introduced in the
example 3.2. In this way, temporal logic cflow
may be implemented using current implementation
of PFL language.

5. DISCUSSION

Although one of the dynamic properties of
programs - control flow � can be implemented by
the transformation of corresponding advice into PFL
language, many questions arise in association with
the definition of advices in a separate language for
them.

First, exploiting manyfold aspects there is no
proof, that this approach is sufficiently open for
adding new aspects of computation in the future.
Second, from the viewpoint of aspect language, we
need multi-paradigmatic language, which means
programming using at least two languages. Third,
separating different concerns of computation without
uniform language basis may decrease the reliability.
Moreover, it seems that any sophisticated software
engineering methodology, not supported by
mathematical reasoning about the correctness and
further properties of the large software systems is
not sufficient to guarantee their correct function and
behavior required by a user [15, 16, 17, 18, 23, 24].
Hence, providing a uniform and an open aspect
language basis is the task of high importance.

At the present time, we have implemented PFL
as a language integrating functional and imperative
properties of current programming languages.
Except modularity, which we plan add in a future,
this language exploits both parametric type
polymorphism and abstract typing, and, since it is
environment based, it is appropriate to object
programming. The work goes on profiling process
functional programs. The significant property is a
uniform handling of objects and algebraic data
structures, as well as arrays. Since of manipulating
environment variables implicitly, stateful
computation is performed using just expression
evaluation, with well-defined side effects. Although
we develop a code generator into Java and Haskell
languages, we think about PFL as a programming
paradigm, rather then programming language. Our
aim is to exploit this paradigm to integrate the
specification and the implementation of complex
software systems. One of inspirative specification
methodology is also aspect programming.

Coming back to the process definition in
example 2.2, which is as follows

p :: v1 T1 -> v2 T2 -> v3 T3 -> T
p x1 x2 x3 = e

it can be noticed that �the application of
environment variable to a type�, such as (vi Ti)
defines separately side-effect action on the variable

Acta Electrotechnica et Informatica No. 1, Vol. 4, 2004 21

vi, for all applications of process p. There is
another form for this side effect action available, as
introduced below:

q :: v {1..10} T’ -> T
q x = e

Then, for example, the application

 q ({2} ())

means the access of the value of the second element
of the array v using this value as x in expression e,
and the application

q ({2} 5)

means the update of the second element of the array
v by the value 5 using this value as x in expression
e. In this case, v {1..10} T’ defines range
checking � in terms of aspect programming it is a
kind of action. These actions are defined in PFL in
type definitions, separated from definitions. Hence
we may think about the extension of this approach
using temporal logic adding a set of additional
advices to a function, a process, a class, an instance,
an object, etc.

Also type definition is formally just a very
restricted and operationally just a very released
advice, which allows the use of argument values
from restricted domain, checking the type of
application of a function or process. The type of
application is defined redundantly, since it may be
derived. It is a question, whether such redundancy is
necessary, if we know that potential occurrence of
an environment variable with the process type would
be clearly redundant. By other words, need we really
to define post-conditions in a program, others than a
single one for the main?

Another inappropriate property in programming
languages is mixing multiple concepts into a single
syntactic construct, i.e. such that are semantically
quite different. For example, type definition such as

p :: v1 T1 -> v2 T2 -> v3 T3 -> T

implies conditions for type checking as well as for
subsequent evaluation of arguments. In general,
there are two ways how to make this evaluation
parallel. First one is to implement n-nary parallel
operation applied in expressions. Second, we may
define parallel evaluation of arguments for all
process applications, in the type expression, for
example, as follows

p :: v1 T1 || v2 T2 || v3 T3 -> T

Both solutions are correct but not flexible enough

to handle the ordering when dynamic load balancing
would improve the run-time efficiency. The
flexibility would increase rapidly if we define a
general ordering function able to change its
definition during computation. This can be

performed, for example by the definition of ordering
advice in the form as follows:

p :: order T1 T2 T3 -> T

Ideally, instead of some mixing concepts we

need the definition of function of computation and
one or more advices, dealing with computational
time, computational space, restrictions on values,
allocation of resources, etc.

Incorporating such advice, or a set of advices into
the language is our current research.

6. CONCLUSION

In this paper we present the ability of PFL � a

process functional language to express source-to-
source transformation, as needed for weaving
different aspects of computation. We have shown
that using environmental basis of process functional
paradigm is sufficient to express woven program
aspectized by an advice comprising pointcut
designator with control flow operation, belonging to
temporal logic.

We also discussed the weakness of current
implementation of PFL and possible directions of
the research in the area of aspect languages in the
future.

Considering different aspects of computation,
such that either simplify software design or define
behavior of the systems, or both, and developing
mechanisms needed for extended PFL as aspect
PFL, this may contribute to a more general approach
to aspect oriented paradigm, that may be applied to
different problem areas and different target
architectures [5, 28, 29]. Among others, our goal is
to provide open language system, based on aspect
PFL which will serve for adaptive definition of new
aspects of computation from one side, and will allow
to implement woven programs to any programming
language. Currently, there exists a bridge from PFL
to Java and Haskell, not however aspect oriented.

The advantage of this approach is that the
experiences from different areas, such as Petri nets
and process algebras [23, 24], imperative functional
programming [19], process functional programming
[9, 10, 11, 12, 13, 14, 21, 22, 25, 26, 27], reasoning
about the correctness of programs [15, 16], etc. may
be studied and they may contribute to aspect
oriented programming using uniform language basis.

The aim is to provide the software development
methodology, which not just increases the reliability
of the systems as a result of better software
engineering methodology, but guarantees this
reliability rigorously, corresponding to the
requirements of a user.

 REFERENCES

 [1] Andrews, J.: Process-algebraic foundations of
aspect oriented programming.
http://citeseer.nj.nec.com/andrews01processalg
ebraic.html, 2001.

22 Static Weaving at Dynamic Join Points

[2] Avdicausevic, E., Lenic, M., Mernik, M.,
Zumer, V.: AspectCOOL: An experiment in
design and implementation of aspect-oriented
language. ACM SIGPLAN not., December
2001, Vol. 36, No.12, pp. 84-94.

[3] Avdicausevic Enis, Mernik Marjan, Lenic
Mitja, Zumer Viljem. Experimental aspect-
oriented language - AspectCOOL. Proceedings
of 17th ACM symposium on applied
computing, SAC 2002, pp. 943-947.

[4] Hudak, P.: Mutable abstract datatypes - or -
How to have your state and munge it too. Yale
University, Department of Computer Science,
Research Report YALEU/DCS/RR-914,
December 1992, revised May 1993

[5] Jel�ina, M., Vokorokos, L., Sobota, B.: Parallel
Computer Architecture of the MIMD Paradigm,
Proc. of the III. Internal Scientific Conference
of the Faculty of Electrical Engineering and
Informatics, May 2003, Ko�ice, pp. 35-36,
ISBN 80-89066-65-8

[6] Kiczales, G. et al: An overview of AspectJ.
Lecture Notes in Computer Science,
2072:327-355, 2001.

[7] Kiczales, G. et al: Aspect-oriented
programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, 11th Europeen Conf. Object-
Oriented Programming, volume 1241 of LNCS,
pp. 220-242, 1997.

[8] Kienzle, J. and Guerraoui, R.: Aspect oriented
software development AOP: Does it make
sense? The case of concurrency and failures. In
B. Magnusson, editor, Proc. ECOOP 2002,
pages 37-61. Springer Verlag, June 2002.

[9] Kollár, J.: Process Functional Programming,
Proc. ISM'99, Ro�nov pod Radho�t m, Czech
Republic, April 27-29, 1999, pp. 41-48.

[10] Kollár, J.: PFL Expressions for Imperative
Control Structures, Proc. Scient. Conf. CEI'99,
October 14-15, 1999, Her any, Slovakia, pp.23-
28

[11] Kollár, J.: Control-driven Data Flow, Journal of
Electrical Engineering, 51(2000), No.3-4,
pp.67-74

[12] Kollár, J.: Comprehending Loops in a Process
Functional Programming Language, Computers
and Artificial Intelligence, 19 (2000), 373�388

[13] Kollár, J.: Object Modelling using Process
Functional Paradigm, Proc. ISM'2000, Ro�nov
pod Radho�t m, Czech Republic, May 2-4,
2000, pp.203-208

[14] Kollár, J., Václavík, P., Porubän, J.: The
Classification of Programming Environments,
Acta Universitatis Matthiae Belii, 10, 2003, pp.
51-64, ISBN 80-8055-662-8

[15] Novitzká, V.: Computer Programming and
Mathematics, Fifth International Scientific
Conference �Electronics Computers and
Informatics´2002�, 10.-11.10.2002, Ko�ice-
Her any, Technická univerzita v Ko�iciach,
2002, 5, pp. 31-36, ISBN 80-7099-879-2

[16] Novitzká, V.: About the theory of correct
programming. February 2003, Elfa s.r.o,

Ko�ice, 117pp. (in Slovak)
[17] Novitzká, V.: Mathematical language in

programming, Acta Electrotechnica et
Informatica, 3, 3, 2003, pp. 31-35, ISSN 1335-
8243

[18] Novitzká, V., Kollár, J.: From requirements
specification to design specification, Journal of
Information, Control and Management
Systems, 1, 2, 2003, pp. 55-64, ISSN 1336-
1716

[19] Peyton Jones, S. L., Wadler, P.: Imperative
functional programming, In 20th Annual
Symposium on Principles of Programming
Languages, Charleston, South Carolina,
January 1993, pp.71-84.

[20] Peyton Jones, S.L., Hughes, J. [editors]: Report
on the Programming Language Haskell 98 - A
Non-strict, Purely Functional Language.
February 1999, 163 p.

[21] Porubän, J.: Profiling process functional
programs. Research report DCI FEII TU
Ko�ice, 2002, 51.pp, (in Slovak)

[22] Porubän, J.: Time and space profiling for
process functional language, Proceeding of the
7th Scientific Conference with International
Participation: Engineering of Modern Electric
'03 Systems, May 29-31, 2003, Felix Spa -
Oradea, University of Oradea, 2003, pp. 167-
172, ISSN-1223-2106

[23] �imo ák, S., Hudák, �.: Using Petri Nets and
Process Algebra in FDT Interfacing, the Fifth
International Scientific Conference �Electronic
Computers and Informatics´2002�, October
2002, Ko�ice - Her any, 2002, pp. 8-13, 80-
7099-879-2

[24] �imo ák, S., Hudák, �.: APC - Algebra of
Process Components, EMES '03, May 29.-31.
2003., Felix Spa, Oradea, 2003, pp. 57-63,
ISSN 1223 � 2106

[25] Václavík, P.: Abstract types and their
implementation in a processs functional
programming language. Research report DCI
FEII TU Ko�ice, 2002, 48.pp, (in Slovak)

[26] Václavík, P., Porubän, J.: Object Oriented
Approach in Process Functional Language,
Proceedings of the Fifth International Scientific
Conference �Electronic Computers and
Informatics´2002�, October 10.-11. 2002,
Ko�ice - Her any, 2002, pp. 92-96, 80-7099-
879-2

[27] Václavík, P.: The Fundamentals of a Process
Functional Abstract Type Translation,
Proceeding of the 7th Scientific Conference
with International Participation: Engineering of
Modern Electric '03 Systems, May 29-31, 2003,
Felix Spa - Oradea, University of Oradea, 2003,
pp. 193-198, ISSN-1223-2106

[28] Vokorokos, L.: Data flow computing model:
Application for parallel computer systems
diagnosis, Computing and Informatics, 20,
(2001), 411-428

[29] Vokorokos, L.: Faults Diagnosis of Transport
Machineries Using the Observer, Transport &

Acta Electrotechnica et Informatica No. 1, Vol. 4, 2004 23

Logistics Journal, 4, 2003, pp. 23-29, YU,
ISSN 1451-107X

[30] Wadler, P.: The essence of functional
programming, In 19th Annual Symposium on
Principles of Programming Languages, Santa
Fe, New Mexico, January 1992, draft, 23 pp.

[31] Wand, M.: A semantics for advice and dynamic
join points in aspect-oriented programming.
Lecture Notes in Computer Science, 2196:45-
57, 2001.

Union. In 1990 he spent 2 month at the Department
of Computer Science at Reading University, Great
Britain. He was involved in the research projects
dealing with the real-time systems, the design of
(micro) programming languages, image processing
and remote sensing, the dataflow systems, the
educational systems, and the implementation of
functional programming languages. Currently the
subject of his research is process functional
paradigm and its application in high performance
computing and aspect programming.

BIOGRAPHIES

Valerie Novitzká defended her PhD. Thesis �On
formal semantics of Anna� in 1989 at Hungarian
Academy of Sciences in Budapest. She is working as
lecturer at the Department of Computers and
Informatics FEII Technical university of Ko�ice,
Slovakia. Her scientific research is focusing on the
theoretical foundations of programming related to
the specification, type theory, program correctness
and the semantics of programming languages.

Ján Kollár was born in 1954. He received his MSc.
summa cum laude in 1978 and his PhD. in
Computing Science in 1991. In 1978-1981 he was
with the Institute of Electrical Machines in Ko�ice.
In 1982-1991 he was with the Institute of Computer
Science at the University of P.J. �afárik in Ko�ice.
Since 1992 he is with the Department of Computers
and Informatics at the Technical University of
Ko�ice. In 1985 he spent 3 months in the Joint
Institute of Nuclear Research in Dubna, Soviet

