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SUMMARY 
 This paper deals with object oriented modelling in cluster analysis based on the Mjolner BETA System and the BETA 
object oriented language. The model is designed in layers, which enables more flexibility and clear understanding. Object 
oriented modelling enables one to create a model that is more natural, and it is easy to extend or change its functionality. 
These features predetermine such a model for making experiments. Cluster analysis has many methods and techniques for 
helping to solve classification problems. Object oriented models enables one to exploit them in a more complex way and thus 
receive interesting results. We use this model on medical data for making a diagnosis. With the benefit of the Mjolner BETA 
System we used rich means for composition, virtual mechanism and persistence. Persistence allows one to split the whole 
application into rather simple parts and to store the results for the next usage.  
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1. INTRODUCTION 

One of the benefits of object-oriented 
programming is modelling. Object oriented 
languages provide excellent facilities for modelling 
phenomena and concepts from the real world. Using 
classes, subclasses and virtuals it is possible to 
describe classification structures and composition 
structures of phenomena and concepts. 
Classification and composition are fundamental 
means for most people to organize knowledge about 
a given application domain.   
 Cluster analysis is an exploratory method for 
helping to solve classification problems. Its use is 
appropriate when little or nothing is known about 
the category structure of a body of data. The 
objective of cluster analysis is to sort a sample of 
cases under consideration into groups such that the 
degree of association is higher between members of 
the same group and lower between members of the 
different groups. Cluster analysis is a modern 
statistical method of partitioning an observed sample 
into disjoint or overlapping homogeneous classes 
and provides an operational classification [1]. This 
classification may help to: 

assist identification (e.g. diagnosing); 
formulate hypotheses concerning the origin of 
population; 
predict the future behaviour of population type 
etc. 

 
Using the object-oriented perspective we design 

a more complex and versatile tool suitable for 
sophisticated utilization. The system we chose for 
realization provides rich facilities for conceptual 
modeling. We used our model for making a 
diagnosis. 
 
 
2. THE BETA PROGRAMMING LANGUAGE 
 

The Beta programming language was designed 
as a successor to Simula67. Like Simula, Beta 

provides built-in support for co-routines and block 
structure. However, Beta improves and generalizes 
Simula in a number of ways. While procedures and 
classes can still be thought of as separate entities, 
they can both be specialized through inheritance and 
declared to be virtual. In fact, Beta removes any 
syntactic distinction between these two concepts and 
treats them as one. More general model and program 
structuring mechanism is called pattern. In Beta 
patterns are therefore employed to describe all of the 
classical programming concepts, such as procedures, 
functions, classes and processes. Beta also extends 
Simula by allowing singular entities, which can 
function as one-of-a-kind objects [9].   
 
 
3. BASIC STRUCTURE OF THE MODEL 
 
 In order to make the model more flexible and 
clear we design a layered model. Each layer 
provides a specific function. Classes creating the 
object oriented model can be divided into three 
layers. The classes dealing with measured data of the 
clusters create the bottom most layer. In this layer 
there is a declared generic-list class, which is 
exploited as a super class for many other classes. 
Further specialized classes of generic-list class help 
to work with a row of measured values that belong 
to each cluster and help to organize this data into a 
list. This layer provides for principal component 
analysis and is exploited by its neighboring layer [4].  
 The classes declared as the basic classes 
necessary for clustering itself create the next layer. 
The main classes are classes describing the cluster 
and the list of clusters. The nature of clustering is an 
association between each pair of clusters. This 
association is mostly expressed by a real value. For 
describing this association we introduce an 
association class called proximity. Objects of this 
class are stored in a proximity-list class.  
 In the most top layer there are declared classes 
realizing different methods of clustering. We use a 
virtual mechanism for describing these methods [7]. 
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3.1  Basic classes 
 
 Basic classes provide a necessary service for the 
next layers of the model. The main class is an 
abstract generic-list class that provides data structure 
and methods for the list of elements with a direct 
access. This list is created using repetition which is 
BETA construct similar to an array in other 
languages. Repetition has built in methods, which 
enable one to declare the dimension of the actual 
repetition at run time and extend current repetitions. 
Elements of the generic list are further specialized in 
subclasses using BETA¶s virtual mechanism [9]. 
 Subclasses of the generic-list class declare the 
structure and operations carried out on the input data 

for clustering. For each cluster there is a row of real 
attributes with identification. The number of 
attributes depends on the application. These data are 
stored in CVector class. CMatrix class, which is 
mainly exploited in principal component analysis, is 
composed of CVector objects. At the beginning of 
clustering proximity values between each pair of 
clusters have to be calculated. There are many 
different algorithms to solve this problem. The other 
subclasses of CVector class are declared to solve the 
problem using a virtual procedure mechanism. 
Structure of the main classes of this layer is shown 
in the following listing of the reduced BETA code. 
 

  
&*HQHULF/LVW��(* GenericList and some of its subclasses *) 
(#   content:< Object; (* virtual class pattern *) 
     Table: [0] ^Content; (* repetition *) 
     Top,incr: @integer; 
     increment: (#  do incr->Table.extend #); .. #); 

&9HFWRU��&*HQHULF/LVW (* Declaration of vector *) 
  (# ident: @integer; 
     content::< realObject (* virtual class pattern further binding *) ; 
     dissim:< (# .. #); .. #); (* virtual procedure *) 

&6TXDUH9HFWRU��&9HFWRU (* square Euclid distance for dissimilarrity *) 
  (# dissim::< (# .. #) #); (* virtual procedure further binding *) 

&:DUG9HFWRU��&6TXDUH9HFWRU (* Ward coefficient dissimilarrity *)   
          (# dissim::<  (#  ..  #) #); 
&(NO9HFWRU��&9HFWRU (* Euclid distance dissimilarity *) 
  (# dissim::<  (# ..  #) #); 
&0DWUL[��&*HQHULF/LVW (* Class matrix and its methods *) 
  (# Content::< CVector (* virtual class pattern further binding *) ; 
     noObj: (* number of clusters *) (#  exit N #); 
     noAtr: (* number of attributes *) (#  exit M #); 
     noObjNext: (* number of further added clusters *)  
     (#  exit NX #); .. 
  #); 
 
 
3.2  Basic classes for clustering 
 
 This layer describes all general classes that are 
necessary for hierarchical clustering itself. At first it 
is the cluster class describing clusters themselves 
and the list of clusters class, which is a container of 
clusters. The cluster class contains two main 
attributes. A reference to a vector of measured 
values and a list of "merged" clusters. During the 
hierarchical clustering process clusters are grouped 
together. So the list of "merged" clusters is used for 
this purpose. This list allows for keeping a history of 
clustering.  
 The nature of the hierarchical clustering is an 
association (called proximity) between each pair of 
clusters. This association is expressed by a real 
value, which is changed during the clustering 
process.  
 The traditional hierarchical clustering approach 
works only with triangular matrix of associations 
and omits clusters completely. Clusters are used 
only at the beginning of the clustering process. 

 To cope with the association problem between 
each pair of clusters we introduce an association 
class between each pair of them.   
 This class holds association values between 
clusters and references to them. This approach 
allows one to compute association between a pair of 
clusters by different methods.  

These associations are arranged in a list of 
proximities. In addition, each cluster has the list of 
its own proximities. (Actually it has only a list of 
references). This is done for making computation 
faster. The class diagram of all the layers is shown in 
the picture 1. 
 
3.3  Specialized classes 
 
 Classes declared in this layer realize individual 
hierarchical clustering methods. In general we 
distinguish two types of hierarchical classification 
methods: traditional and definit methods. The 
traditional methods work only with a pair of clusters 
with minimum proximity value in each step of 
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clustering. Contrary to the traditional methods 
definit methods work with a set of pairs of clusters, 
fulfilling a given interval in each step of clustering.  

Both these main types have a lot of individual 
methods. For each declared method a special 
subclass of the cluster list class is created. Inside 
these classes virtual procedures are exploited. The 
common part of these methods is declared in the 
cluster list class and further binding is declared in a 
given subclass. In addition, there are two forms of 
algorithms for each individual hierarchical clustering 
method, recursive form and explicit form. 
Consequently each subclass contains at least virtual 

methods for explicit and recursive forms of 
computing the given proximity value.  
 
 
4. PERSISTENCE 
 

Beta is a persistent programming language and 
fulfils basic requirements for persistence: 
  

persistence is type orthogonal; 
persistence applies equality to all kinds of 
objects; 
object access is location independent. 

Picture 1.  Class diagram ± hierarchical clustering 
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A persistent object is an object that is saved on 
secondary storage during a program execution and 
thus survives the program execution in which it was 
created. A persistent object may be read by another 
program execution. By default, when an object is 
made persistent, all objects that can be reached 
through references are made persistent as well. The 
set of objects that can be reached from that object in 
this way is called the transitive closure of the object. 
Persistent objects are saved in a persistent store, 
which is a collection of persistent objects. An object 
may be pointed out to become a persistent root. 
 In the current BETA version it is possible to use 
one persistent store for one application [6].   

Our intention of using persistence was motivated 
by two reasons. The first was the size of the data we 
wanted to process and the second was splitting the 
whole application into smaller parts (i.e. to separate 
graphical outputs from the computational parts). In 
terms of the first reason of using persistence, our 
model contains several lists (some of them 
"merged") and during the hierarchical clustering in 
some lists the elements are deleted while in the 
others lists they are added. During the experiments 
mainly the operation deletion proved to be "time 
consuming". Perhaps the way we used persistence is 

not quite the traditional way. On the other hand, in 
terms of splitting an application into smaller parts it 
was without any problems.  
 
 
5. RESULTS 
 

The designed model was tested on medical data, 
which are aimed at judging the risk of 
cardiovascular diseases. 16 attributes were measured 
for each tested person. In the first step we created 
5 final clusters out of 500 single element clusters 
(tested persons). Each of these 5 final clusters was 
represented by the supposed risk of cardiovascular 
diseases (low, medium, high etc.) and in this way 
these clusters represent hypothetical classification 
structure. Then we calculated proximity values 
between new single element clusters and the 
classification structure. The results obtained in this 
way may be used for making a diagnosis and are 
presented in the table 2. The first column represents 
a new tested cluster. In the second column there are 
identifications of the clusters belonging to the 
hypothetical classification structure. The next three 
columns represent results of three different 
clustering computations [5].     

 
 
 

new cluster 
identification 

classification 
structure cluster-

identification 

partitional proximity partitional nearest 
neighbour 

hierarchical 
proximity 

892 1 3.761314 3.064040 14.031 
892 4 3.520515 2.289107 8.508 
892 5 2.427633 1.165088 2.361 
892 6 3.557192 1.792499 10.119 
892 66 5.432594 3.393863 24.514 

     
894 1 2.283625 0.878928 5.172 
894 4 4.651128 3.614552 19.069 
894 5 4.515607 2.425641 15.661 
894 6 6.033694 4.029887 31.558 
894 66 7.743661 4.803328 50.934 

 

Table 2.  Clustering results for making a diagnosis 
 
 
6. CONCLUSION 

Simplification of tasks is a principal way in 
which we are trying to cope with the complexity of 
models and programs. It is based on abstraction, i.e. 
the removal or aggregation of details, components 
and/or relationships. To decrease mental effort, we 
can divide a system into substructures, which can be 
then treated as primitives at this level and defined as 
composites at the level below.  
 Modularisation and hierarchies play an important 
role in this process, leading to the notion of the 
layered design as a basis for a powerful metaphor 
concerning organizing such layers of knowledge 

through locality of description [7]. Encapsulation 
ensures that objects can be insulated from a 
surrounding context by allowing access to internal 
representations only through well-defined interfaces; 
the so-called message protocols.  
 Finally, inheritance of structure and behaviour 
along with class/subclass links make it easy to 
extend systems by adding new classes (new layers). 
In this way special purpose libraries can be built, 
whose components are defined, tested and debugged 
incrementally and interactively.  
 The cluster analysis has many different methods 
and approaches for creating classification structure 
of the unknown data. It is done by the fact that 
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different data require different methods. Our 
experience convinced us that object-orientation is an 
appropriate style for modelling this problem.  
 Object oriented modelling enables one to create a 
more complex model of cluster analysis that brings 
new possibilities of exploiting cluster analysis than 
the traditional approach. It covers parallel 
calculations of unimeasure dissimilarity, interactive 
hierarchical clustering and combination of 
hierarchical and partitional clustering. Interactive 
hierarchical clustering enables one to add new 
clusters to a classification structure of clusters and 
continue with clustering without the necessity to 
start from the very beginning. 

The nature of combination of the hierarchical 
and partitional clustering lies in the fact that 
classification structure produced by the hierarchical 
clustering is transformed into partitional clustering 
and is exploited for making diagnoses between a 
new single element cluster and the classification 
structure.  
 
REFERENCES 
 
[1] Backer, E.: Computer-Assisted Reasoning In 

Cluster Analysis, Prentice Hall, 1995 
[2] Everitt, B.S., Landau S., Leese M.: Cluster 

Analysis, Arnold, 2001 
[3] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, 

P., Uthurusamy, R.: Advances in Knowledge   
 Discovery and Data Mining, AAAI Press, 1996  
[4] Hu ka, F.: Aspects of Object-Oriented 

Modeling, CE&I '99 Conference proceedings, 

The Technical University Koãice, Slovak 
Republic, pp.91-96, 1999  

[5] Hu ka, F.: Exploiting Clustering for Making a 
Diagnosis. MENDEL 2001. 8th International 
Conference on Soft Computing. Brno 2002. pp. 
244-248. ISBN: 80-214-2135-5 

[6] Knudsen, J. L.: Object-oriented Environment, 
Prentice Hall 1994  

[7] Kreutzer, W., Osterbye, K.: BetaSIM A 
framework for discrete event modelling and 
simulation. Simulation Practice and Theory, 6 
(1998), pp. 573-599 

[8] Lukasovi, A., âarmanovi, J.: Cluster Analysis 
Methods, SNTL Praha 1985 

[9] Madsen, O. L., Moller-Pedersen, B., Nyggard, 
K.: Object-Oriented Programming in the BETA 
programming Language. Adison Wesley, 1993 

 
 
 
BIOGRAPHY 
 
Frantiãek Hu ka was born on 27.2.1953. In 1977 
he graduated (MSc.) at the department of 
Cybernetics, Faculty of Mechanical and Electrical 
Engineering University of Transport and 
Communication in äilina. He defended his PhD. in 
1994 at the Faculty of Management University of 
äilina. Title of his thesis was Distributed Systems 
Control Modelling. He is employed at the 
department of Computer Science University of 
Ostrava. He focuses his research in the field of 
object oriented technologies and simulation.   


