
Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 55

OBJECT ORIENTED APPROACH IN CLUSTER ANALYSIS

Frantiãek HU KA
Department of Computer Science, University of Ostrava, Dvo ikova 7, 701 03 Ostrava 1,

Czech Republic, tel.: +420 596 160 221, E-mail: frantisek.hunka@osu.cz

SUMMARY
 This paper deals with object oriented modelling in cluster analysis based on the Mjolner BETA System and the BETA
object oriented language. The model is designed in layers, which enables more flexibility and clear understanding. Object
oriented modelling enables one to create a model that is more natural, and it is easy to extend or change its functionality.
These features predetermine such a model for making experiments. Cluster analysis has many methods and techniques for
helping to solve classification problems. Object oriented models enables one to exploit them in a more complex way and thus
receive interesting results. We use this model on medical data for making a diagnosis. With the benefit of the Mjolner BETA
System we used rich means for composition, virtual mechanism and persistence. Persistence allows one to split the whole
application into rather simple parts and to store the results for the next usage.

Keywords: object oriented modelling, numerical clustering, BETA

1. INTRODUCTION

One of the benefits of object-oriented
programming is modelling. Object oriented
languages provide excellent facilities for modelling
phenomena and concepts from the real world. Using
classes, subclasses and virtuals it is possible to
describe classification structures and composition
structures of phenomena and concepts.
Classification and composition are fundamental
means for most people to organize knowledge about
a given application domain.
 Cluster analysis is an exploratory method for
helping to solve classification problems. Its use is
appropriate when little or nothing is known about
the category structure of a body of data. The
objective of cluster analysis is to sort a sample of
cases under consideration into groups such that the
degree of association is higher between members of
the same group and lower between members of the
different groups. Cluster analysis is a modern
statistical method of partitioning an observed sample
into disjoint or overlapping homogeneous classes
and provides an operational classification [1]. This
classification may help to:

assist identification (e.g. diagnosing);
formulate hypotheses concerning the origin of
population;
predict the future behaviour of population type
etc.

Using the object-oriented perspective we design

a more complex and versatile tool suitable for
sophisticated utilization. The system we chose for
realization provides rich facilities for conceptual
modeling. We used our model for making a
diagnosis.

2. THE BETA PROGRAMMING LANGUAGE

The Beta programming language was designed
as a successor to Simula67. Like Simula, Beta

provides built-in support for co-routines and block
structure. However, Beta improves and generalizes
Simula in a number of ways. While procedures and
classes can still be thought of as separate entities,
they can both be specialized through inheritance and
declared to be virtual. In fact, Beta removes any
syntactic distinction between these two concepts and
treats them as one. More general model and program
structuring mechanism is called pattern. In Beta
patterns are therefore employed to describe all of the
classical programming concepts, such as procedures,
functions, classes and processes. Beta also extends
Simula by allowing singular entities, which can
function as one-of-a-kind objects [9].

3. BASIC STRUCTURE OF THE MODEL

 In order to make the model more flexible and
clear we design a layered model. Each layer
provides a specific function. Classes creating the
object oriented model can be divided into three
layers. The classes dealing with measured data of the
clusters create the bottom most layer. In this layer
there is a declared generic-list class, which is
exploited as a super class for many other classes.
Further specialized classes of generic-list class help
to work with a row of measured values that belong
to each cluster and help to organize this data into a
list. This layer provides for principal component
analysis and is exploited by its neighboring layer [4].
 The classes declared as the basic classes
necessary for clustering itself create the next layer.
The main classes are classes describing the cluster
and the list of clusters. The nature of clustering is an
association between each pair of clusters. This
association is mostly expressed by a real value. For
describing this association we introduce an
association class called proximity. Objects of this
class are stored in a proximity-list class.
 In the most top layer there are declared classes
realizing different methods of clustering. We use a
virtual mechanism for describing these methods [7].

56 Object Oriented Approach in Cluster Analysis

3.1 Basic classes

 Basic classes provide a necessary service for the
next layers of the model. The main class is an
abstract generic-list class that provides data structure
and methods for the list of elements with a direct
access. This list is created using repetition which is
BETA construct similar to an array in other
languages. Repetition has built in methods, which
enable one to declare the dimension of the actual
repetition at run time and extend current repetitions.
Elements of the generic list are further specialized in
subclasses using BETA¶s virtual mechanism [9].
 Subclasses of the generic-list class declare the
structure and operations carried out on the input data

for clustering. For each cluster there is a row of real
attributes with identification. The number of
attributes depends on the application. These data are
stored in CVector class. CMatrix class, which is
mainly exploited in principal component analysis, is
composed of CVector objects. At the beginning of
clustering proximity values between each pair of
clusters have to be calculated. There are many
different algorithms to solve this problem. The other
subclasses of CVector class are declared to solve the
problem using a virtual procedure mechanism.
Structure of the main classes of this layer is shown
in the following listing of the reduced BETA code.

&*HQHULF/LVW��(* GenericList and some of its subclasses *)
(# content:< Object; (* virtual class pattern *)
 Table: [0] ^Content; (* repetition *)
 Top,incr: @integer;
 increment: (# do incr->Table.extend #); .. #);

&9HFWRU��&*HQHULF/LVW (* Declaration of vector *)
 (# ident: @integer;
 content::< realObject (* virtual class pattern further binding *) ;
 dissim:< (# .. #); .. #); (* virtual procedure *)

&6TXDUH9HFWRU��&9HFWRU (* square Euclid distance for dissimilarrity *)
 (# dissim::< (# .. #) #); (* virtual procedure further binding *)

&:DUG9HFWRU��&6TXDUH9HFWRU (* Ward coefficient dissimilarrity *)
 (# dissim::< (# .. #) #);
&(NO9HFWRU��&9HFWRU (* Euclid distance dissimilarity *)
 (# dissim::< (# .. #) #);
&0DWUL[��&*HQHULF/LVW (* Class matrix and its methods *)
 (# Content::< CVector (* virtual class pattern further binding *) ;
 noObj: (* number of clusters *) (# exit N #);
 noAtr: (* number of attributes *) (# exit M #);
 noObjNext: (* number of further added clusters *)
 (# exit NX #); ..
 #);

3.2 Basic classes for clustering

 This layer describes all general classes that are
necessary for hierarchical clustering itself. At first it
is the cluster class describing clusters themselves
and the list of clusters class, which is a container of
clusters. The cluster class contains two main
attributes. A reference to a vector of measured
values and a list of "merged" clusters. During the
hierarchical clustering process clusters are grouped
together. So the list of "merged" clusters is used for
this purpose. This list allows for keeping a history of
clustering.
 The nature of the hierarchical clustering is an
association (called proximity) between each pair of
clusters. This association is expressed by a real
value, which is changed during the clustering
process.
 The traditional hierarchical clustering approach
works only with triangular matrix of associations
and omits clusters completely. Clusters are used
only at the beginning of the clustering process.

 To cope with the association problem between
each pair of clusters we introduce an association
class between each pair of them.
 This class holds association values between
clusters and references to them. This approach
allows one to compute association between a pair of
clusters by different methods.

These associations are arranged in a list of
proximities. In addition, each cluster has the list of
its own proximities. (Actually it has only a list of
references). This is done for making computation
faster. The class diagram of all the layers is shown in
the picture 1.

3.3 Specialized classes

 Classes declared in this layer realize individual
hierarchical clustering methods. In general we
distinguish two types of hierarchical classification
methods: traditional and definit methods. The
traditional methods work only with a pair of clusters
with minimum proximity value in each step of

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 57

clustering. Contrary to the traditional methods
definit methods work with a set of pairs of clusters,
fulfilling a given interval in each step of clustering.

Both these main types have a lot of individual
methods. For each declared method a special
subclass of the cluster list class is created. Inside
these classes virtual procedures are exploited. The
common part of these methods is declared in the
cluster list class and further binding is declared in a
given subclass. In addition, there are two forms of
algorithms for each individual hierarchical clustering
method, recursive form and explicit form.
Consequently each subclass contains at least virtual

methods for explicit and recursive forms of
computing the given proximity value.

4. PERSISTENCE

Beta is a persistent programming language and
fulfils basic requirements for persistence:

persistence is type orthogonal;
persistence applies equality to all kinds of
objects;
object access is location independent.

Picture 1. Class diagram ± hierarchical clustering

1

CGenericList

CVector

CMatrix

CCluster CProximityList

CProximity

CClusterList

CPointReg

CClusterListWW

CClusterListCM

CClusterListNN

CClusterListDf

CClusterListFN

list

1

1

1 1

1

1

1

1
1

1

*

*

*

1

1

Specialized class layer

Basic clustering class layer

Basic class layer

58 Object Oriented Approach in Cluster Analysis

A persistent object is an object that is saved on
secondary storage during a program execution and
thus survives the program execution in which it was
created. A persistent object may be read by another
program execution. By default, when an object is
made persistent, all objects that can be reached
through references are made persistent as well. The
set of objects that can be reached from that object in
this way is called the transitive closure of the object.
Persistent objects are saved in a persistent store,
which is a collection of persistent objects. An object
may be pointed out to become a persistent root.
 In the current BETA version it is possible to use
one persistent store for one application [6].

Our intention of using persistence was motivated
by two reasons. The first was the size of the data we
wanted to process and the second was splitting the
whole application into smaller parts (i.e. to separate
graphical outputs from the computational parts). In
terms of the first reason of using persistence, our
model contains several lists (some of them
"merged") and during the hierarchical clustering in
some lists the elements are deleted while in the
others lists they are added. During the experiments
mainly the operation deletion proved to be "time
consuming". Perhaps the way we used persistence is

not quite the traditional way. On the other hand, in
terms of splitting an application into smaller parts it
was without any problems.

5. RESULTS

The designed model was tested on medical data,
which are aimed at judging the risk of
cardiovascular diseases. 16 attributes were measured
for each tested person. In the first step we created
5 final clusters out of 500 single element clusters
(tested persons). Each of these 5 final clusters was
represented by the supposed risk of cardiovascular
diseases (low, medium, high etc.) and in this way
these clusters represent hypothetical classification
structure. Then we calculated proximity values
between new single element clusters and the
classification structure. The results obtained in this
way may be used for making a diagnosis and are
presented in the table 2. The first column represents
a new tested cluster. In the second column there are
identifications of the clusters belonging to the
hypothetical classification structure. The next three
columns represent results of three different
clustering computations [5].

new cluster
identification

classification
structure cluster-

identification

partitional proximity partitional nearest
neighbour

hierarchical
proximity

892 1 3.761314 3.064040 14.031
892 4 3.520515 2.289107 8.508
892 5 2.427633 1.165088 2.361
892 6 3.557192 1.792499 10.119
892 66 5.432594 3.393863 24.514

894 1 2.283625 0.878928 5.172
894 4 4.651128 3.614552 19.069
894 5 4.515607 2.425641 15.661
894 6 6.033694 4.029887 31.558
894 66 7.743661 4.803328 50.934

Table 2. Clustering results for making a diagnosis

6. CONCLUSION

Simplification of tasks is a principal way in
which we are trying to cope with the complexity of
models and programs. It is based on abstraction, i.e.
the removal or aggregation of details, components
and/or relationships. To decrease mental effort, we
can divide a system into substructures, which can be
then treated as primitives at this level and defined as
composites at the level below.
 Modularisation and hierarchies play an important
role in this process, leading to the notion of the
layered design as a basis for a powerful metaphor
concerning organizing such layers of knowledge

through locality of description [7]. Encapsulation
ensures that objects can be insulated from a
surrounding context by allowing access to internal
representations only through well-defined interfaces;
the so-called message protocols.
 Finally, inheritance of structure and behaviour
along with class/subclass links make it easy to
extend systems by adding new classes (new layers).
In this way special purpose libraries can be built,
whose components are defined, tested and debugged
incrementally and interactively.
 The cluster analysis has many different methods
and approaches for creating classification structure
of the unknown data. It is done by the fact that

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 59

different data require different methods. Our
experience convinced us that object-orientation is an
appropriate style for modelling this problem.
 Object oriented modelling enables one to create a
more complex model of cluster analysis that brings
new possibilities of exploiting cluster analysis than
the traditional approach. It covers parallel
calculations of unimeasure dissimilarity, interactive
hierarchical clustering and combination of
hierarchical and partitional clustering. Interactive
hierarchical clustering enables one to add new
clusters to a classification structure of clusters and
continue with clustering without the necessity to
start from the very beginning.

The nature of combination of the hierarchical
and partitional clustering lies in the fact that
classification structure produced by the hierarchical
clustering is transformed into partitional clustering
and is exploited for making diagnoses between a
new single element cluster and the classification
structure.

REFERENCES

[1] Backer, E.: Computer-Assisted Reasoning In

Cluster Analysis, Prentice Hall, 1995
[2] Everitt, B.S., Landau S., Leese M.: Cluster

Analysis, Arnold, 2001
[3] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth,

P., Uthurusamy, R.: Advances in Knowledge
 Discovery and Data Mining, AAAI Press, 1996
[4] Hu ka, F.: Aspects of Object-Oriented

Modeling, CE&I '99 Conference proceedings,

The Technical University Koãice, Slovak
Republic, pp.91-96, 1999

[5] Hu ka, F.: Exploiting Clustering for Making a
Diagnosis. MENDEL 2001. 8th International
Conference on Soft Computing. Brno 2002. pp.
244-248. ISBN: 80-214-2135-5

[6] Knudsen, J. L.: Object-oriented Environment,
Prentice Hall 1994

[7] Kreutzer, W., Osterbye, K.: BetaSIM A
framework for discrete event modelling and
simulation. Simulation Practice and Theory, 6
(1998), pp. 573-599

[8] Lukasovi, A., âarmanovi, J.: Cluster Analysis
Methods, SNTL Praha 1985

[9] Madsen, O. L., Moller-Pedersen, B., Nyggard,
K.: Object-Oriented Programming in the BETA
programming Language. Adison Wesley, 1993

BIOGRAPHY

Frantiãek Hu ka was born on 27.2.1953. In 1977
he graduated (MSc.) at the department of
Cybernetics, Faculty of Mechanical and Electrical
Engineering University of Transport and
Communication in äilina. He defended his PhD. in
1994 at the Faculty of Management University of
äilina. Title of his thesis was Distributed Systems
Control Modelling. He is employed at the
department of Computer Science University of
Ostrava. He focuses his research in the field of
object oriented technologies and simulation.

